1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nordsb [41]
3 years ago
11

What is the power dissipated by a 50.0 ohm resistor?

Physics
1 answer:
Morgarella [4.7K]3 years ago
6 0

Answer:

The power, in watts, dissipated as heat in a resistor varies jointly with the resistance, in ohms, and the square of the current, in amperes. A 15-ohm resistor carrying a current of 1 ampere dissipates 15 watts. How much power is dissipated in a 5-ohm resistor carrying a current of 3 amperes?

Explanation:

You might be interested in
In transistor emitter current is equal to which current?
Paladinen [302]
In transistor,
Emitter current is equal to the sum of base current and collector current.
Thanks!
8 0
3 years ago
Two identical small metal spheres with q1 > 0 and |q1| > |q2| attract each other with a force of magnitude 72.1 mN when se
Brrunno [24]

1) +2.19\mu C

The electrostatic force between two charges is given by

F=k\frac{q_1 q_2}{r^2} (1)

where

k is the Coulomb's constant

q1, q2 are the two charges

r is the separation between the charges

When the two spheres are brought in contact with each other, the charge equally redistribute among the two spheres, such that each sphere will have a charge of

\frac{Q}{2}

where Q is the total charge between the two spheres.

So we can actually rewrite the force as

F=k\frac{(\frac{Q}{2})^2}{r^2}

And since we know that

r = 1.41 m (distance between the spheres)

F= 21.63 mN = 0.02163 N

(the sign is positive since the charges repel each other)

We can solve the equation for Q:

Q=2\sqrt{\frac{Fr^2}{k}}=2\sqrt{\frac{(0.02163)(1.41)^2}{8.98755\cdot 10^9}}}=4.37\cdot 10^{-6} C

So, the final charge on the sphere on the right is

\frac{Q}{2}=\frac{4.37\cdot 10^{-6} C}{2}=2.19\cdot 10^{-6}C=+2.19\mu C

2) q_1 = +6.70 \mu C

Now we know the total charge initially on the two spheres. Moreover, at the beginning we know that

F = -72.1 mN = -0.0721 N (we put a negative sign since the force is attractive, which means that the charges have opposite signs)

r = 1.41 m is the separation between the charges

And also,

q_2 = Q-q_1

So we can rewrite eq.(1) as

F=k \frac{q_1 (Q-q_1)}{r^2}

Solving for q1,

Fr^2=k (q_1 Q-q_1^2})\\kq_1^2 -kQ q_1 +Fr^2 = 0

Since Q=4.37\cdot 10^{-6} C, we can substituting all numbers into the equation:

8.98755\cdot 10^9 q_1^2 -3.93\cdot 10^4 q_1 -0.141 = 0

which gives two solutions:

q_1 = 6.70\cdot 10^{-6} C\\q_2 = -2.34\cdot 10^{-6} C

Which correspond to the values of the two charges. Therefore, the initial charge q1 on the first sphere is

q_1 = +6.70 \mu C

8 0
4 years ago
A 3200-lb car is moving at 64 ft/s down a 30-degree grade when it runs out of fuel. Find its velocity after that if friction exe
Karolina [17]

Answer:

The velocity is 40 ft/sec.

Explanation:

Given that,

Force = 3200 lb

Angle = 30°

Speed = 64 ft/s

The resistive force with magnitude proportional to the square of the speed,

F_{r}=kv^2

Where, k = 1 lb s²/ft²

We need to calculate the velocity

Using balance equation

F\sin\theta-F_{r}=m\dfrac{d^2v}{dt^2}

Put the value into the formula

3200\sin 30-kv^2=m\dfrac{d^2v}{dt^2}

Put the value of k

3200\times\dfrac{1}{2}-v^2=m\dfrac{d^2v}{dt^2}

1600-v^2=m\dfrac{d^2v}{dt^2}

At terminal velocity \dfrac{d^2v}{dt^2}=0

So, 1600-v^2=0

v=\sqrt{1600}

v=40\ ft/sec

Hence, The velocity is 40 ft/sec.

4 0
3 years ago
how far can a mother push a 20.0kg baby carriage, using a force of 62.0N at angle of 30.0°to the horizontal, if she can do 2920
enot [183]
Here is my solution using my app.

4 0
4 years ago
a person standing at the edge of a seaside cliff kicks a stone over the edge with a speed of 18 m/s. The cliff is 52 m above the
Alexxx [7]
You already have the speed, now you need the time.
I will use the formula for speed which is S=D/T.
S=Speed    D=Distance   T=Time.
So here we have, 18m/s = 52m/T
we do 18 divided by 52 which would be .3461.
.3461 seconds is how long it took the stone to reach the water.
7 0
4 years ago
Read 2 more answers
Other questions:
  • Which statement best defines a universal law?
    13·2 answers
  • A python can detect thermal radiation from objects that differ in temperature from their environment as long as the received int
    10·1 answer
  • A 400-n block is dragged along a horizontal surface by an applied force as shown. the coefficient of kinetic friction is uk = 0.
    10·1 answer
  • When magnesium fluoride reacts with iodine, the products are fluorine and magnesium iodide. What would the equation be?
    15·1 answer
  • An organ pipe is open at both ends. It is producing sound
    13·1 answer
  • Consider the differential equation
    5·1 answer
  • Two students, sitting on frictionless carts, push against each other. Both are initially at rest and the mass of student 1 and t
    8·1 answer
  • Different kinds of electromagnetic waves are identified by<br> their -?-
    5·1 answer
  • Help me pls I WILL GIVE BRAINIEST I DONT CARE PLS HELP
    6·2 answers
  • The gravitational force between two volleyball players is 3.9 × 10^-7 N . If the kasses of the players are 63 kg and 78 kg, what
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!