A.) desertification is when you remove all the trees and most of the plant life in an ares
x= the coefficients in front of the substance in the balanced chemical equation
[H+]= the concentration of hydrogen ions
[A-]= the concentration of the other ion that broke off from the H+
[HA]= the un-disassociated acid concentration
The higher the Ka value, the greater amount of disassociation of the reactants into products. As for acids, they will break down to form H+ ions. The more the H+ ions, the stronger acidity of the solution. Thus since A has the highest Ka value, that represents the strongest acid.
You can determine the Ka value from a number of ways. If equilibrium concentrations are given of a certain acid solution, you can find the proportion of the concentration of ions to the concentration of the remaining HA molecules, using the equation above. Also, pH and KpH can be used in a number of ways. This gets more complicated and depends on the situation, and requires more advanced equations.
Hope this helped a little, its obviously not my best work
The Law of Conservation of Mass states that the mass of reactants entering a reaction must be equal to the mass of the products exiting it. In this case, we only have 2 reactants, Fe and S, and we only have 1 product, FeS. Therefore we expect the total mass of the Fe and S reactants to equal the mass of FeS. This gives us 112 g + 64 g = 176 g of FeS, which is choice D.
Answer:
transition metals
Explanation:
they're the elements in yellow in the picture