Using the Michaelis-Menten equation competitive inhibition, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
<h3>What is the Ki for the inhibitor?</h3>
The Ki of an inhibitor is known as the inhibition constant.
The inhibition is a competitive inhibition as the Vmax is unchanged but Km changes.
Using the Michaelis-Menten equation for inhibition:
Making Ki subject of the formula:
where:
- Kma is the apparent Km due to inhibitor
- Km is the Km of the enzyme-catalyzed reaction
- [I] is the concentration of the inhibitor
Solving for Ki:
where
[I] = 26.7 μM
Km = 1.0
Kma = (150% × 1 ) + 1 = 2.5
Ki = 26.7 μM/{(2.5/1) - 1)
Ki = 53.4 μM
Therefore, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
Learn more about enzyme inhibition at: brainly.com/question/13618533
<h2>Acetic Acid + Sodium ethoxide ⇄ Butyric Acid + Sodium Hydroxide</h2>
Explanation:
An ionic equation for the reaction of acetic acid with sodium ethoxide is as follows -
Acetic Acid and Sodium ethanolate (sodium ethoxide)
Butyric Acid and Sodium hydroxide
Hence,
Acetic Acid + Sodium ethoxide ⇄ Butyric Acid + Sodium Hydroxide
⇄ 
- Weak acids and bases have low energy than strong acids and bases.
- The chemical equilibria shift the reaction side with the species having lower energy.
- Given reaction is an acid-base reaction in which the equilibrium favors the starting material that means it will go to the side of the weakest acid that is acetic acid is weaker than butyric acid.
Answer:
I think that is called oxalic acid
Explanation:
<span>Group 1 can be characterized as atoms that have 1 electron in their valence shell. This is valuable when dealing with these questions, because the loss or gain of valence electrons is what defines ionic relationships. When group 1 elements form ionic bonds with other atoms, they are extremely likely to lose their valence electron, since the nucleus has a weaker pull on it than, say, a chlorine atom has on its 7 valence electrons. The weaker pull between the nucleus and the valence electron of group 1 elements means that the radius is high, since the electron is more free to move with less pull on it. This also means that the first ionization energy is low, since it takes relatively little energy for that electron to be pulled away to another atom.</span>
Answer: n∗R=22+273.15/4.2∗5n
P2=n∗R∗T2/V2=n∗R∗33.6+273.15/10
Explanation: