Answer:
Use the Bromotriflouride catalyst, BF₃
Explanation:
The BF₃ is most likely to yield less desired side products. The effect lies in the reaction mechanism.
BF₃ is a Lewis acid. Its role is to promote the ionization of the HF. This is achieved through the electrophilic mechanism. The reaction mechanism is as follows:
2 - methylpropene + H-F-BF₃ → H-F + H₃C + benzene
butylbenzene + F-BF₃ → tert-butylbenzene + H-F + BF₃ (regenerated catalyst)
Because their valence shell have stable electrons so they can't gain or loose electrons.
in ionic bonds the elements should gain or loose electrons
Answer:
Water serves to suspend the red blood cells to carry oxygen to the cells. It is the solvent for the electrolytes and nutrients needed by the cells, and also the solvent to carry waste material away from the cells. With water as the solvent, osmotic pressure acts to transport the needed water into cells.
Explanation:
Answer:
4.12 mol
Explanation:
Given data:
Moles of LiOH required = ?
Volume of solution = 4.2 L
Molarity of solution = 0.98 M
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
we will calculate the moles from above given formula.
0.98 M = number of moles / 4.2 L
0.98 M × 4.2 L = number of moles
Number of moles = 0.98 M × 4.2 L
Number of moles = 4.12 mol (M = mol/L)
Answer:
Potassium
Explanation:
Most reactive metal in the reactivity series