Answer:
Since she read half of the book, it's 50%+ the 40% she read yesterday, that make 90%.So she is left with 10%
Using the binomial distribution, it is found that there is a:
a) The probability that two randomly selected 3-year-old male chipmunks will live to be 4 years old is 0.93153 = 93.153%.
b) The probability that six randomly selected 3-year-old male chipmunks will live to be 4 years old is 0.80834 = 80.834%.
c) The probability that at least one of six randomly selected 3-year-old male chipmunks will not live to be 4 years old is 0.19166 = 19.166%. This probability is not unusual, as it is greater than 5%.
-----------
For each chipmunk, there are only two possible outcomes. Either they will live to be 4 years old, or they will not. The probability of a chipmunk living is independent of any other chipmunk, which means that the binomial distribution is used to solve this question.
Binomial probability distribution

The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- 0.96516 probability of a chipmunk living through the year, thus

Item a:
- Two is P(X = 2) when n = 2, thus:

The probability that two randomly selected 3-year-old male chipmunks will live to be 4 years old is 0.93153 = 93.153%.
Item b:
- Six is P(X = 6) when n = 6, then:

The probability that six randomly selected 3-year-old male chipmunks will live to be 4 years old is 0.80834 = 80.834%.
Item c:
- At least one not living is:

The probability that at least one of six randomly selected 3-year-old male chipmunks will not live to be 4 years old is 0.19166 = 19.166%. This probability is not unusual, as it is greater than 5%.
A similar problem is given at brainly.com/question/24756209
Combine like terms and use inverse operations
The limit does not exist. Why? Because the left hand limit DOES NOT equal the right hand limit. Let’s double check:
We could use -0.000001 to represent the left hand limit. This is less than 0. We plug in 5x - 8
5(-0.000001) - 8
-0.000005 - 8
-8.000005
If we would continue the limit (extend the zeros to infinity), we would get exactly
-8
That is our left hand limit.
Our right hand limit will be represented by 0.000001. This is greater than 0. We plug in abs(-4 - x)
abs(-4 - (0.000001))
abs(-4.000001)
4.000001
If we would continue the limit (extend the zeros to infinity), we would get exactly
4
4 does not equal -8, therefore
The limit does not exist