Answer:
The solutions to the quadratic equations will be:

Step-by-step explanation:
Given the expression

Let us solve the equation by completing the square

Add (-6)² to both sides

simplify

Apply perfect square formula: (a-b)² = a²-2ab+b²
i.e.

so the expression becomes


solve

add 6 to both sides

Simplify

also solving

add 6 to both sides

Simplify

Therefore, the solutions to the quadratic equation will be:

Answer:
yes
Step-by-step explanation:
8456590