Answer:
Chloro-Flouro-Carbon
Explanation:
Chloro-Flouro-Carbon (CFC Gas) is used as a refrigerant in fridges and freezers.
Answer:
BF3
Explanation:
For this question, you need to use the number of valence electrons present in each element. Boron is in group 3/13 on the periodic table so you know it has 3 valence electrons while Fluorine is in group 7/17 so it has 7 valence electrons. These elements are both covalent so they will share electrons. All elements in the first three rows want to reach either have 8 valence electrons or zero valence electrons depending on whichever is easier. When B and F interact each Fluorine will only want to take one electron, but Boron wants to get rid of all 3 electrons, so it will bond with 3 Fluorine to get rid of all its valence electrons.
I hope this helps.
To find the moles, you can use the following formula
moles= Molarity x Liters
Molarity= 2.0 M
Liters= 0.0010 Liters ---------------->>>>>>>>>> 1.0 mL= 0.0010 Liters
moles= 2.0 M x 0.0010 Liters= 0.0020 moles
Answer:
every method of removing heat from LED's should be considered. Conduction, convection, and radiation are the three means of heat transfer. Typically, LED's are encapsulated in a transparent resin, which is a poor thermal conductor. Nearly all heat produced is conducted through the back side of the chip. Heat is generated from the PN junction by electrical energy that was not converted to useful light, and conducted to outside ambiance through a long path, from junction to solder point, solder point to board, and board to the heat sink and then to the atmosphere. A typical LED side view and its thermal model are shown in the figures.
Explanation: