For i: 33mL
For ii: 87-88mL
For iii:22.3mL
Answer
:
Flammable substances
Explanation
:
<em>Flammable substances</em> will catch fire and continue to burn when they contact an ignition source like a spark or a flame.
For example, <em>methanol</em> is a flammable liquid.
A flammable solid may also catch fire through friction. <em>Matches</em> are flammable solids.
You can boil or evaporate the water and the salt will be left behind as a solid. If you want to collect the water, you can use distillation. This works because salt has a much higher boiling point than water. One way to separate salt and water at home is to boil the salt water in a pot with a lid. So, I would say maybe oil.
Answer:
Normality N = 0.2 N
Explanation:
Normality is the number of gram of equivalent of solute divided of volume of solution, where the number of gram of equivalent of solute is weight of the solute divided by the equivalent weight.
Normality is represented by N.
Mathematically, we have :

Given that:
number of gram of equivalent of solute = 90 milliequivalents 90 × 10⁻³ equivalent
volume of solution (HCl) = 450 mL 450 × 10⁻³ L

Normality N = 0.2 N
Answer: acid dissociation constant Ka= 2.00×10^-7
Explanation:
For the reaction
HA + H20. ----> H3O+ A-
Initially: C. 0. 0
After : C-Cx. Cx. Cx
Ka= [H3O+][A-]/[HA]
Ka= Cx × Cx/C-Cx
Ka= C²X²/C(1-x)
Ka= Cx²/1-x
Where x is degree of dissociation = 0.1% = 0.001 and c is the concentration =0.2
Ka= 0.2(0.001²)/(1-0.001)
Ka= 2.00×10^-7
Therefore the dissociation constant is
2.00×10^-7