Answer : The value of for the given reaction is, 0.36
Explanation :
Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.
The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.
As we know that the concentrations of pure solids and liquids are constant that is they do not change. Thus, they are not included in the equilibrium expression.
The given equilibrium reaction is,
The expression of will be,
First we have to calculate the concentration of .
Now we have to calculate the value of for the given reaction.
Therefore, the value of for the given reaction is, 0.36
This question is asking for a method for the determination of the freezing point in a solution that does not have a noticeable transition in the cooling curve, which is basically based on a linear fit method.
The first step, would be to understand that when the transition is well-defined as the one on the attached file, we can just identify the temperature by just reading the value on the graph, at the time the slope has a pronounced change. For instance, on the attached, the transition occurs after about 43 seconds and the freezing point will be about 4 °C.
However, when we cannot identify a pronounced change in the slope, it will be necessary to use a linear fit method (such as minimum squares) to figure out the equation for each segmented line having a significantly different slope and then equal them so that we can numerically solve for the intercept.
As an example, imagine two of the segmented lines have the following equations after applying the linear fit method:
First of all, we equal them to find the x-value, in this case the time at which the freezing point takes place:
Next, we plug it in in any of the trendlines to obtain the freezing point as the y-value:
This means the freezing point takes place after 7.72 second of cooling and is about 1.84 °C. Now you can replicate it for any not well-defined cooling curve.
Learn more:
I think it’s C atomic radius and numbers of unshielded protons
The atomic mass number does<span> not change because a </span>beta<span> particle has a much smaller </span>mass<span> than the </span>atom<span>. The </span>atomic number<span> goes up because a neutron has turned into an extra proton. </span>Beta decay<span> is fundamentally different from alpha </span>decay<span>. An alpha particle is made of two protons and two neutrons.</span>