I got you b, V(final)^2=V(initial+2acceleration*displacement
So this turns to (0m/s)^2=(50m/s)^2+2(9.8)(d) so just flip it all around to isolate d so you get
-(50m/s)^2/2(9.8) = d so you get roughly 12.7555 meters up
Answer:
a. ρ
b. 
Explanation:
a. To find the density of magnetic field given use the gauss law and the equation:
,
,
Ω,
,
, 
ρ
ρ
ρ
ρ
b. The electric field can be find using the equation:




The total momentum of the system has to be conserved to satisfy the principle of conservation of momentum. Before the ball hits the bottle, the momentum of the system is 0.4 x 18 = 7.2 kg m/s
The momentum of the bottle after being hit is 0.2 x 25 = 5 kg m/s
So the momentum of the ball now is 7.2 - 5 = 2.2 kg m/s
Hence its velocity is 2.2/0.4 = 5.5 m/s
Answer:
the answer is static electricity
1. Sound waves produced by a vibrating object are compressional waves.
2. Loudness is the human perception of sound wave intensity.
3. The process of detecting objects by bouncing sounds off them is called echolocation.