Answer: 25 percent of the jar is filled with orange candies
Step-by-step explanation:
In the jar, there are 3 yellow candies, 3 blue candies, and 2 orange candies. This means that the total number of candies inside the jar would be the sum of the yellow, blue and orange candies. It becomes
3 + 3 + 2 = 8 candies.
The percent of the jar filled with orange candies would be expressed as
number of orange candies/total number of candies × 100
It becomes
2/8 × 100 = 25%
Fun, geometry disguised as probability.
That's a pentagon, which we can view as 10 right triangles with legs a and s/2 (half of s) and hypotenuse r. So area of the pentagon is
P = 10 × (1/2) a (s/2) = 10 (1/2) (3.2) (4.7/2) = 37.6
The area of the circle is πr² so the circle area is
C = π (4²) = 50.265482
The white area is the difference, C-P, and the probability we seek is the fraction of the circle that's white, so (C-P)/C.
p = (C-P)/C =1-P/C = 1-37.6/50.265482 = 0.251971
Answer: 0.25
Higher than I would have guessed from the figure.
Answer:
Step-by-step explanation:
You can split the coins into 3 groups, each of them has 3 coins. Weigh group 1 vs group 2, if one is lighter, that group has the fake coin. If both groups weigh the same, then group 3 has the fake coin.
Continue to split the group that has the fake coin into 3 groups, each group has 1 coin. Now apply the same procedure and we can identify the fake coin.
Total of scale usage is 2
b) if you have
coins then you can apply the same approach and find the fake coin with just n steps. By splitting up to 3 groups each step, after each step you should be able to narrow down your suspected coin by 3 times.
Step 1: you narrow down to group of
coins
Step 2: you narrow down to group of
coins
Step 3: you narrow down to group of
coins
...
Step n: Step 1: you narrow down to group of
coin
Me neither. I used to know, good luck!