Yes, parallax affects the precision of a measurement that you make. It introduces an error in the order of the parallax. It will cause the measurement to be different from the real answer. Hope this answers the question. Have a nice day.
To answer the two questions, we need to know two important equations involving centripetal movement:
v = ωr (ω represents angular velocity <u>in radians</u>)
a =
Let's apply the first equation to question a:
v = ωr
v = ((1800*2π) / 60) * 0.26
Wait. 2π? 0.26? 60? Let's break down why these numbers are written differently. In order to use the equation v = ωr, it is important that the units of ω is in radians. Since one revolution is equivalent to 2π radians, we can easily do the conversion from revolutions to radians by multiplying it by 2π. As for 0.26, note that the question asks for the units to be m/s. Since we need meters, we simply convert 26 cm, our radius, into meters. The revolutions is also given in revs/min, and we need to convert it into revs/sec so that we can get our final units correct. As a result, we divide the rate by 60 to convert minutes into seconds.
Back to the equation:
v = ((1800*2π)/60) * 0.26
v = (1800*2(3.14)/60) * 0.26
v = (11304/60) * 0.26
v = 188.4 * 0.26
v = 48.984
v = 49 (m/s)
Now that we know the linear velocity, we can find the centripetal acceleration:
a =
a =
a = 9234.6 (m/)
Wow! That's fast!
<u>We now have our answers for a and b:</u>
a. 49 (m/s)
b. 9.2 * (m/)
If you have any questions on how I got to these answers, just ask!
- breezyツ
It takes more work to use a meat grinder
it's def. TRUE. i got the same question and i got it right
The red, yellow, and green wavelengths of sunlight are absorbed by water molecules in the ocean. ... In coastal areas, runoff from rivers, resuspension of sand and silt from the bottom by tides, waves and storms and a number of other substances can change the color of the near-shore waters.