Answer:
4.6 m
Explanation:
First of all, we can find the frequency of the wave in the string with the formula:

where we have
L = 2.00 m is the length of the string
T = 160.00 N is the tension
is the mass linear density
Solving the equation,

The frequency of the wave in the string is transmitted into the tube, which oscillates resonating at same frequency.
The n=1 mode (fundamental frequency) of an open-open tube is given by

where
v = 343 m/s is the speed of sound
Using f = 37.3 Hz and re-arranging the equation, we find L, the length of the tube:

Answer: the earth
Explanation: ask your teacher
784 Newtons or 176.37 lbs
Answer: 0.2 hours
Explanation: In order to solve this question we have to considerer that a recargeable battery can supply 1800 mA in one hour then we have to determine how long could this battery drive current through a long, thin wire of resistance 34 Ω .
Besides, this battery has a voltage of 12 V
so by using the Ohm law we also know that V=R*I,
Fron this we can obtain:
I= V/R= 12 V/ 34 Ω=0.35 A= 350 mA
then considering that this battery can supply 1800 mA in one hour we have this battery can supply 350 mA in x time in the form:
1hour------- 1800 mA
x hour--------350 mA
time= 350/1800= 0.2 hour
Answer:
I=2 kg.m/s
Explanation:
The impulse is defined as the change of momentum:
![I=p_f-p_o\\I=m*v_f-m*v_o\\I=0.02kg*[(-60m/s)-40m/s]\\I=2kg.m/s](https://tex.z-dn.net/?f=I%3Dp_f-p_o%5C%5CI%3Dm%2Av_f-m%2Av_o%5C%5CI%3D0.02kg%2A%5B%28-60m%2Fs%29-40m%2Fs%5D%5C%5CI%3D2kg.m%2Fs)
We took the final velocity as negative since it is going on the opposite direction of the intial motion of the ball.