Answer:
I would agree with the statement. it's not just the body, but everything that we see is almost 99.9999% empty space
By v = u - at
<span>=>8 = 12 - a x 0.25 </span>
<span>=>a = 4/0.25 km/hr/sec </span>
<span>=>a = 16km/hr/sec
I hope this helped!</span>
Answer:
Explanation:
Option a is correct
If puck and pick constitute a system then the momentum of the system is conserved but not this may not be valid for the puck .
Option e is correct
If puck and pick is the system then momentum is conserved but because of the presence of friction, mechanical energy is not conserved.
Friction will cause the energy to dissipate in heat.
The particles of the medium (slinky in this case) move up and down (choice #2) in a transverse wave scenario.
This is the defining characteristic of transverse waves, like particles on the surface of water while a wave travels on it, or like particles in a slack rope when someone sends a wave through by giving it a jolt.
The other kind of waves is longitudinal, where the particles of the medium move "left-and-right" along the direction of the wave propagation. In the case of the slinky, this would be achieved by giving a tensioned slinky an "inward" jolt. You would see that such a jolt would give rise to a longitudinal wave traveling along the length of the tensioned slinky. Another example of longitudinal waves are sound waves.
Answer:
Sound intensity levels are quoted in decibels (dB) much more often than sound intensities in watts per meter squared. Decibels are the unit of choice in the scientific literature as well as in the popular media. The reasons for this choice of units are related to how we perceive sounds. How our ears perceive sound can be more accurately described by the logarithm of the intensity rather than directly to the intensity. The sound intensity level β in decibels of a sound having an intensity I in watts per meter squared is defined to be β(dB)=10log10(II0)β(dB)=10log10(II0), where I0 = 10−12 W/m2 is a reference intensity. In particular, I0 is the lowest or threshold intensity of sound a person with normal hearing can perceive at a frequency of 1000 Hz. Sound intensity level is not the same as intensity. Because β is defined in terms of a ratio, it is a unitless quantity telling you the level of the sound relative to a fixed standard (10−12 W/m2, in this case). The units of decibels (dB) are used to indicate this ratio is multiplied by 10 in its definition. The bel, upon which the decibel is based, is named for Alexander Graham Bell, the inventor of the telephone.
Table 1. Sound Intensity Levels and IntensitiesSound intensity level β (dB)Intensity I(W/m2)Example/effect01 × 10–12Threshold of hearing at 1000 Hz101 × 10–11Rustle of leaves201 × 10–10Whisper at 1 m distance301 × 10–9Quiet home401 × 10–8Average home501 × 10–7Average office, soft music601 × 10–6Normal conversation701 × 10–5Noisy office, busy traffic801 × 10–4Loud radio, classroom lecture901 × 10–3Inside a heavy truck; damage from prolonged exposure[1]1001 × 10–2Noisy factory, siren at 30 m; damage from 8 h per day exposure1101 × 10–1Damage from 30 min per day exposure1201Loud rock concert, pneumatic chipper at 2 m; threshold of pain1401 × 102Jet airplane at 30 m; severe pain, damage in seconds1601 × 104Bursting of eardrums