Answer:
1/ sqrt(1+ln^2(x)) * 1/(ln^2x +1) * 1/x
Step-by-step explanation:
f(x) = sin (tan^-1 (ln(x)))
u substitution
d/du (sin u) * du /dx
cos (u) * du/dx
Let u =(tan^-1 (ln(x))) du/dx =d/dx (tan^-1 (ln(x)))
v substitution
Let v = ln x dv/dx = 1/x
d/dv (tan ^-1 v) dv/dx
1/( v^2+1) * dv/dx
=1/(ln^2x +1) * 1/x
Substituting this back in for du/dx
cos (tan^-1 (ln(x)) * 1/(ln^2x +1) * 1/x
We know that cos (tan^-1 (a)) = 1/ sqrt(1+a^2)
cos (tan^-1 (ln(x)) * 1/(ln^2x +1) * 1/x
1/ sqrt(1+ln^2(x)) * 1/(ln^2x +1) * 1/x
Answer:
82.79MPa
Step-by-step explanation:
Minimum yield strength for AISI 1040 cold drawn steel as obtained from literature, Sᵧ = 490 MPa
Given, outer radius, r₀ = 25mm = 0.025m, thickness = 6mm = 0.006m, internal radius, rᵢ = 19mm = 0.019m,
Largest allowable stress = 0.8(-490) = -392 MPa (minus sign because of compressive nature of the stress)
The tangential stress, σₜ = - ((r₀²p₀)/(r₀² - rᵢ²))(1 + (rᵢ²/r²))
But the maximum tangential stress will occur on the internal diameter of the tube, where r = rᵢ
σₜₘₐₓ = -2(r₀²p₀)/(r₀² - rᵢ²)
p₀ = - σₜₘₐₓ(r₀² - rᵢ²)/2(r₀²) = -392(0.025² - 0.019²)/2(0.025²) = 82.79 MPa.
Hope this helps!!
The answer would be the last option. :)
Answer:
942.22
Step-by-step explanation:
0.9(x-20)=830
Distribute .9
.9x -18 =830
Add 18 to each side
.9x -18+18=830+18
.9x = 848
Divide each side by .9
.9x/.9 = 848/.9
x =942.22222222
To the nearest hundredth
942.22
<span>3√20/√5
= </span>3 √4 √5<span> / √5
= 3 * 2
= 6
answer is </span><span>b)6</span>