Because of the vertical asymptote and the change in concavity, we conclude that the correct option is B.
<h3>
Which is the graph of cotangent of x?</h3>
Remember that cot(x) = 1/tan(x).
Then we can rewrite:
cot(x) = cos(x)/sin(x).
We know that for x = 0, we have:
cot(0) = cos(0)/sin(0) = 1/0
Then we have a vertical asymptote that tends to ± infinity.
The only graph that meets this condition is the second and the third one, and by the curvature (we need to have a change of concavity/convexity) in the tangent function.
From that, we conclude that the correct option is B.
If you want to learn more about trigonometric functions:
brainly.com/question/8120556
#SPJ1