Answer:
Step-by-step explanation:
<u>Use the slope formula:</u>
10.
- m = (6.24 - 3.27)/(5 - 2) = 2.97/3 = 0.99
11.
- m = (240 - 360)/(3 - 1) = -120/2 = -60
12.
- m = (8.84 - 6.09)/(7 - 2) = 2.75/5 = 5.5
Answer:
$5.65
Step-by-step explanation:
Divide 22.6 / 4.
5.65
Best of Luck!
Answer:
The equation of line with given slope that include given points is 3 y + x - 20 = 0
Step-by-step explanation:
According to Cora , if we know the slope and points on a line then we can write the equation of a line .
Since , The equation of line in slope-intercept form is
y = m x + c
<u>Where m is the slope of line , and if we know the points ( x , y ) which satisfy the line then constant term c can be get and the equation of line can be formed .</u>
So , From the statement said above it is clear that she is correct .
Now , Again
Given as :
Slope of a line is m = - 
That include points ( 2 , 6 )
Now from the equation of line as y = m x + c
∴ 6 = -
( 2 ) + c
Or, 6 = -
+ c
So , c = 6 +
or, c =
∴ c =
So, The equation of line can be written as
y = -
x +
Or, 3 y = - x + 20
I.e 3 y + x - 20 = 0
Hence The equation of line with given slope that include given points is 3 y + x - 20 = 0 Answer
<h2>
Answer:</h2><h2>
The 97th term in the series is 409</h2>
Step-by-step explanation:
The given sequence is 25, 29, 33, ....
The sequence represents arithmetic progression
In an AP, the first term is a1 = 25
The difference between two terms, d = 29 - 25 = 4
To find the 97th term,
By formula, 
Substituting the values in the above equation, we get

= 25 + (96 * 4)
= 25 + 384
= 409
The 97 th term in the given sequence is 409.
Answer:
43.35 years
Step-by-step explanation:
From the above question, we are to find Time t for compound interest
The formula is given as :
t = ln(A/P) / n[ln(1 + r/n)]
A = $2500
P = Principal = $200
R = 6%
n = Compounding frequency = 1
First, convert R as a percent to r as a decimal
r = R/100
r = 6/100
r = 0.06 per year,
Then, solve the equation for t
t = ln(A/P) / n[ln(1 + r/n)]
t = ln(2,500.00/200.00) / ( 1 × [ln(1 + 0.06/1)] )
t = ln(2,500.00/200.00) / ( 1 × [ln(1 + 0.06)] )
t = 43.346 years
Approximately = 43.35 years