<span>It is translucent materials. Translucent materials let the light to pass through but disseminated the light to the materials in a way that make objects on the opposite side appear blurred. Examples of translucent materials are frosted glass, oil paper, some plastics, ice and tissue paper.</span>
Answer:
By designing suitable gene therapies in order to restore target gene expression.
Explanation:
Cystic fibrosis and muscular dystrophy are inherited genetic disorders associated with serious health problems. Cystic fibrosis is caused by mutations in the gene that encodes for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, and it is a condition associated with abnormal production of sticky mucus that leads to problems in the lungs and the digestive systems. On the other hand, muscular dystrophy is produced by mutations in genes localized on the X chromosome such as, for example, the gene 'dystrophin'. Gene therapy is an experimental approach used to compensate abnormal gene function by introducing exogenous genetic material and thus restore their altered protein products. Consequently, personalized gene therapies can be useful to treat inherited disorders such as cystic fibrosis and muscular dystrophy.
Sorry but. Do your own school!
Answer:
As one goes up the other does as well for the first 2 but they aren't proportional (it is not simple cause and effect as there is a lot of factors)
The last question is to decrease their emissions as rising temperature is being effected by rising CO2 levels and rising temperature can cause a feedback loop causing more rising temperature
Explanation:
Answer:
F1 Females - all wild type
F1 Males - all wild type
F2 Females - - all wild type
F2 Males - 1/2 wild type, 1/2 vermilion
Explanation:
The wild-type allele (Xᵛ⁺) is dominant over vermilion (Xᵛ), which is a sex-linked trait.
Female flies have two X chromosomes, male flies have one X and one Y chromosome.
A homozygous wild-type female fly (Xᵛ⁺Xᵛ⁺) is mated with a vermilion male fly (XᵛY).
The female parent can only produce Xᵛ⁺ gametes.
The male parent can produce either Xᵛ or Y gametes.
When gametes from both parents fuse, the F1 offspring will have the genotypes Xᵛ⁺Xᵛ (females with wild type eyes) and Xᵛ⁺Y (males with wild type eyes).
The F1 females can produce Xᵛ⁺ and Xᵛ gametes. The F1 males can produce Xᵛ⁺ and Y gametes.
When the F1 individuals interbreed, the gametes combine to give rise to the F2 offspring. The possible combination of gametes that will give the different genotypes and phenotypes in the F2 are:
- Xᵛ⁺Xᵛ⁺ females with wild type eyes
- Xᵛ⁺ Y males with wild type eyes
- Xᵛ Xᵛ⁺ females with wild type eyes
- Xᵛ Y males with vermilion eyes