Answer:
The tension in the rope is 262.88 N
Explanation:
Given:
Weight
N
Length of rope
m
Initial speed of ball 
For finding the tension in the rope,
First find the mass of rod,
(
)

kg
Tension in the rope is,


N
Therefore, the tension in the rope is 262.88 N
Answer:
0
Explanation:
Given the following :
Height of wall = 19.2 m
Time taken to hit the ground = 5 seconds
Acceleration due to gravity (g) = 9.8m/s ( downward motion)
The initial velocity of the object refers to the Velocity of the object at time t = 0
Initial Velocity = g × time
Initial Velocity = 9.8 × 0 = 0
The answer is 86 degrees Fahrenheit. Formula is (30 x 9.5) + 32 = 86
Answer:
A.) 1430 metres
B.) 80 seconds
Explanation:
Given that the train accelerates from rest at 1.1m/s^2 for 20s. The initial velocity U will be:
U = acceleration × time
U = 1.1 × 20 = 22 m/s
It then proceeds at constant speed for 1100 m
Then, time t will be
Time = distance/ velocity
Time = 1100/22
Time = 50 s
before slowing down at 2.2m/s^2 until it stops at the station.
Deceleration = velocity/time
2.2 = 22/t
t = 22/2.2
t = 10s
Using area under the graph, the distance between the two stations will be :
(1/2 × 22 × 20) + 1100 + (1/2 × 22 × 10)
220 + 1100 + 110
1430 m
The time taken between the two stations will be
20 + 50 + 10 = 80 seconds
Answer:
0.12959085 J
Explanation:
k = Coulomb constant = 
q = Charge = 1.55 μC
d = Distance between charge = 0.5 m
Electric potential energy is given by

In this system with three charges which are equidistant from each other


The potential energy of the system is 0.12959085 J