Answer:
a) F = 2250 Ib
b) F = 550 Ib
c) new max force ( F newmax ) = 2850 Ib
Explanation:
A) The force the wall of the elevator shaft exert on the motor if the elevator starts from rest and goes up
max capacity of elevator = 24000 Ibs
counterweight = 1000 Ibs
To calculate the force (F) :
we first calculate the Tension using this relationship
Counterweight (1000) - T = ( 1000 / g ) ( g/4 )
Hence T = 750 Ib
next determine F
750 + F - 2400 = 2400 / 4
hence F = 2250 Ib
B ) calculate Tension first
T - 1000 = ( 1000/g ) ( g/4)
T = 1250 Ib
F = 2400 -1250 - 2400/ 4
F = 550 Ib
C ) determine design limit
Max = 2400 * 1.2 = 2880 Ib
750 + new force - 2880 = 2880 / 4
new max force ( F newmax ) = 2850 Ib
Answer:
I think A
Explanation:
because it dosn't have enough tools
To provide a greater certainty that the observed results are not by chance.
Answer:
Explanation:
No of atoms of Ra in 1 g of sample = 6.023 x 10²³ / 226
N = 2.66 x 10²¹
disintegration constant λ = .693 / half life
half life = 1620 x 365 x 60 x 60 x 24 = 5.1 x 10¹⁰ s
disintegration constant λ = .693 / 5.1 x 10¹⁰
radioactivity dn / dt = λN
= (.693 / 5.1 x 10¹⁰ ) x 2.66 x 10²¹
= .3614 x 10¹¹ per sec
= 3.614 x 10¹⁰ / s
Answer:
q=1.7346×10⁻⁶C
Explanation:
Since the electric field is perpendicular to the bottom and top of the cube,the total flux is equals the flux over the top of surface plus the flex over the lower surface
Ф(total)=Ф₃₀₀+Ф₂₃₀
But the flux is given by Ф=E.A=EACos(θ) where θ is the angle between Area vector and electric field
So
Ф(total)=E₃₀₀A Cos(180)+E₂₃₀ACos(0)
Ф(total)=A(E₃₀₀ - E₂₃₀)
The total flux is given by Gauss Law as:
Ф(total)=q/ε₀
q=ε₀Ф(total)
q=ε₀(A(E₃₀₀ - E₂₃₀))
Substitute the given values
q=(8.85×10⁻¹²){(70²)(100 - 60)}
q=1.7346×10⁻⁶C