Answer:
5.865 μs
Explanation:
t₀ = Time taken to decay a muon = 2.20 μs
c = Speed of Light in vacuum = 3×10⁸ m/s
v = Velocity of muon = 0.927 c
t = Lifetime observed
Time dilation

∴Lifetime observed for muons approaching at 0.927 the speed of light is 5.865 μs
Answer:
The shearing stress is 10208.3333 Pa
The shearing strain is 0.25
The shear modulus is 40833.3332 Pa
Explanation:
Given:
Block of gelatin of 120 mm x 120 mm by 40 mm
F = force = 49 N
Displacement = 10 mm
Questions: Find the shear modulus, Sm = ?, shearing stress, Ss = ?, shearing strain, SS = ?
The shearing stress is defined as the force applied to the block over the projected area, first, it is necessary to calculate the area:
A = 40*120 = 4800 mm² = 0.0048 m²
The shearing stress:

The shearing strain is defined as the tangent of the displacement that the block over its length:

Finally, the shear modulus is the division of the shearing stress over the shearing strain:

3x + 1 ≤ 1
Subtract 1 from each side: 3x ≤ 0
Divide each side by 3 : <em>x ≤ 0</em>
Answer:
The free body diagram of John is shown in the attached figure (in the FBD john's mass is supposed to be concentrated at his center of mass and FBD is made of center of mass)
b) As shown in the FBD the ground reaction forces are:
i) In X direction 
ii) In Y direction 
c) The respective accelerations in x and y direction's is calculated by newton's second law as indicated under

The normal force decreases, this is the frictional force. It will be counteracted by the force which accelerates the brick to slide downward opposite to the end where the board is raised. As the angle increases the force acting upon the brick opposite to the normal force will decrease.