You would assume that in this figure, the number of colored sections with which are not colored with respect to a " touching " colored section, would be half of the total colored sections. However that is not the case, the sections are not alternating as they still meet at a common point. After all, it notes no two touching sections, not adjacent sections. Their is no equation to calculate this requirement with respect to the total number of sections.
Let's say that we take one triangle as the starting. This triangle will be the start of a chain of other triangles that have no two touching sections, specifically 7 triangles. If a square were to be this starting shape, there are 5 shapes that have no touching sections, 3 being a square, the other two triangles. This is presumably a lower value as a square occupies two times as much space, but it also depends on the positioning. Therefore, the least number of colored sections you can color in the sections meeting the given requirement, is 5 sections for this first figure.
Respectively the solution for this second figure is 5 sections as well.
2x2=4, 5x6=30
Not sure if they’re one expression, of so it’s (2x2)+(5x6)=34
Answer:
substitute that value for x in the polynomial and see if it evaluates to zero
Step-by-step explanation:
A "zero" of a polynomial is a value of the polynomial's variable that make the expression become zero when it is evaluated. As an almost trivial example, consider the polynomial x-3. The value x = 3 is a zero because substituting that value for x makes the expression evaluate as zero.
3 -3 = 0
___
Evaluating polynomials can be done different ways. Straight substitution for the variable is one way. Using synthetic division by x-a (where "a" is the value of interest) is another way. This latter method is completely equivalent to rewriting the polynomial to Horner form for evaluation.
__
In the attachment, Horner Form is shown at the bottom.
Answer:
2
Step-by-step explanation:
Solve. Technically, there are two methods. You can first multiply, or first divide.
Essentially the question is:
(5 * 2)/5
or
2 * (5/5)
Solve. Remember to follow PEMDAS. First solve the parenthesis, then simplify:
(5 * 2)/5 = (10)/5 = 2
2 * (5/5) = 2 * 1 = 2
2 is your answer.
~