Transcription Initiation. The first step in transcription is initiation, when the RNA pol binds to the DNA upstream (5′) of the gene at a specialized sequence called a promoter (Figure 2a). In bacteria, promoters are usually composed of three sequence elements, whereas in eukaryotes, there are as many as seven elements ...
Answer:
The two problems that the transfer of information from DNA to protein must overcome are:
- How to bring the information from the nuclear DNA to the place of protein synthesis?
- How to convert this DNA information into amino acids and then into proteins?
Explanation:
The genetic information is found in the DNA and depends on a specific sequence of nitrogenous bases. This information is transcribed into the messenger RNA, whose base sequence is organized into triplets and codons, each of which encodes an amino acid, as well as establishing the pattern for starting and stopping the synthesis of a protein.
<h3>How to bring the information from the nuclear DNA to the place of protein synthesis?
</h3>
The DNA must be transcribed into messenger RNA (mRNA), a process that occurs in the nucleus of the cell. mRNA leaves the nucleus and travels to the cytoplasm, where amino acid synthesis will take place.
<h3>How to convert this DNA information into amino acids and then into proteins?</h3>
Once in the cytoplasm mRNA binds to ribosomes, structures in charge of translating the sequence of nitrogenous bases RNA to synthesize amino acids. The set of ribosomes and rough endoplasmic reticulum are in charge of the assembly of amino acids to produce peptides and proteins.
Answer:
B. Only genetic engineering can produce an organism with desired
traits.
Explanation:
B. Only genetic engineering can produce an organism with desired
traits.
Apples are drawn to a massive object, like the earth, and fall down under a gravitational constant. On the other hand, planets revolve around a more massive object under the same premise. It’s the same idea, just one follows a linear path, and the other has a uniform circular motion path because other forces are acting on it. In other words, the planets ARE still falling, but the sun is also pulled by them so they just keep dancing.