<span>1) y = -f(x) (This is the reflection about the x-axis of the graph y = f(x).) That is for every point (x, y) there is a point (x, -y).
</span><span>2) y = |f(x)| means that the entire graph will be above the x-axis. Why? (The absolute value is always positive, that's why!!)<span> To graph the absolute value graph, graph the function y = f(x). Anything above the x-axis, stays above it, anything below the x-axis is reflected above the x-axis and anything on the x-axis, stays on the x-axis.
</span></span><span>3) y = f(-x) (This is reflection about the y-axis of the graph y = f(x)) For every point on the right of the y-axis, there is a point equidistant to the left of the y-axis. That is for every point (x, y), there is a point (-x, y).
</span><span>4) Reflections about the line y = x is accomplished by interchanging the x and the y-values. Thus for y = f(x) the reflection about the line y = x is accomplished by x = f(y). Thus the reflection about the line y = x for y = x2 is the equation x = y2. </span>
Answer:
x = 115 - p
Step-by-step explanation:
generally in algebra you will use the letter "x" to represent a value you do not know, so it wants an algebraic expression for "p subtracted from 115", this can be rewritten as 115 - p. So the unknown value "x" is equal to 115 - p.
Answer:
Step-by-step explanation:
I can't make specific statements about the proof because the midpoint is missing.
Givens
There are two right angles created by where the perpendicular bisector meats MN. Both are 90 degrees.
MN is bisected by the point on MN where the perpendicular meets MN
The Perpendicular Bisector is is common to both triangles.
Therefore the two triangles are congruent by SAS
PM = PN Parts contained in Congruent triangles are congruent.