1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
seraphim [82]
2 years ago
5

A circle of radius 1 is inscribed within a square. What is the probability that a randomly-selected point with the square is als

o within the circle?
Mathematics
1 answer:
cricket20 [7]2 years ago
4 0

A circle of radius 1 is inscribed within a square. What is the probability that a randomly-selected point with the square is also within the circle?

{p}^{2}  >  {p}^{2} \:   \: and \:  \: p  {1}^{2}  -  \: p {2}^{2}  \:  <  \frac{1}{3}

Step-by-step explanation:

HOPE ITS HELP

You might be interested in
PLEASE HELP ASAP!!!!!!!
natita [175]

Answer:

142

Step-by-step explanation:

8 0
3 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
Please help!!!
stiv31 [10]

Answer:

B

C

B

Step-by-step explanation:

1.  Percent means out of 100

8% = 8/100

.08

B

2. Is means equals and of means multiply

W = 48% *180

W = .48 *180

W =86.4

C

3. Is means equals and of means multiply

80 = 125% * W

80 = 1.25 W

Divide each side by 1.25

80/1.25 = W

64

B

6 0
3 years ago
What does the strategy 'Dont get bogged down' mean
kap26 [50]
It means not to get too invested in details or to become so invested in something that you can’t focus on anything else.
5 0
2 years ago
a rectangle has an area of 34 sqaure feet. A larger rectangle has an area of 124 sqaure feet. what is the percent increase of th
amid [387]

Answer:

<u>The difference in areas:</u>

  • 124 - 34 = 90 square feet

<u>Percent increase:</u>

  • 90/34*100% = 264.71%
5 0
2 years ago
Other questions:
  • Is 40% bigger than 2/5
    14·2 answers
  • I need help in Tuesday night homework I don't understand
    15·2 answers
  • Subtract
    11·1 answer
  • Given sin B = .88 find angle B in radians. Round your answer to the nearest hundredth.
    10·1 answer
  • What is the solution of 2(x + 4) - x = 15?<br><br> please solve in a easy way
    12·2 answers
  • Complete factor of 12m+60
    11·1 answer
  • The scatter plot shows the first-year income for 15 people, based on the number of years of school they each had after high scho
    14·2 answers
  • Which numbers are irrational ?
    5·1 answer
  • Help anyone need it asap<br> 8th grade math
    14·1 answer
  • Please help, I don't know how to get the answer.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!