Answer:
9.91 mL
Explanation:
Using the combined gas law equation as follows;
P1V1/T1 = P2V2/T2
Where;
P1 = initial pressure (torr)
P2 = final pressure (torr)
V1 = initial volume (mL)
V2 = final volume (mL)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question;
V1 = 15.0mL
V2 = ?
P1 = 760 torr
P2 = 1252 torr
T1 = 10°C = 10 + 273 = 283K
T2 = 35°C = 35 + 273 = 308K
Using P1V1/T1 = P2V2/T2
760 × 15/283 = 1252 × V2/308
11400/283 = 1252V2/308
Cross multiply
11400 × 308 = 283 × 1252V2
3511200 = 354316V2
V2 = 3511200 ÷ 354316
V2 = 9.91 mL
Answer: See description
Explanation:
Kepler's laws have three principal points:
1. planets orbit the sun in elliptical paths
2. the orbial period is related to the orbital distance by 
where T is the orbital period and d is the orbital distance, T is in years and d is measured in units of the earth sun distance.
3. planets closer to the sun move faster than planets far away from it.
Newton:
Newton discovered that there is a consequence to the gravity exerted by objects: mass, the heavier the planet, the more gravitational force it posseses ( thats why we orbit the sun)
with the gravitational force
newton discovered the inverse-quadratic relationship between the distance of the planets and the acceleration exerted by the force one could exert on another.
Kepler's laws were mostly based on observed evidence with quantitative relationships between the mentioned variables. Newton's laws are based on calculus and symbolic equations. While Kepler's mode is basic, Newton took another step in and build a more general model for gravity (which was improved by general relativity later). In a nutshell Newton proved the scientific causes for Kepler's laws...
Answer:
Metals are thermal conductor.
Activity series of metals: K,Na,Mg,Al,Zn,Fe,Cu,Ag. Metals on the left are more reactive than metals on the right. For example Zn is more reactive than Fe and can displace him.
Reaction than can occur is: <span>CuSO4(aq) + Fe(s) → FeSO4(aq) + Cu(s).</span>