<span>The question says,'Mathew was working with different concentrations of hydrochloric acid in the lab. Which of these would best describe the resulsts Mathew would see if he was using a conductivity apparatus in each of the different acid concentration. The correct answer is C. This is because, acids conduct electricity, the stronger the acid, the brighter the electricity that will be produced while the weaker the acid, the weaker the electricity that will be produced. Thus, higher concentration equals tronger electricity.</span>
Answer: The increase in solubility or the rate of dissolving process of a gaseous solute in a liquid solvent is due to following:
- Increasing agitation
- Increasing temperature
- Increasing solute's partial pressure over the solvent
- Increasing solute's surface area
Explanation:
When agitation is increased then there will occur an increase in kinetic energy of the molecules of a substance. As a result, more number of collisions will take place due to which more amount of solute will dissolve into the solvent.
Similarly, increasing the temperature will further increase the kinetic energy of molecules. Hence, this will lead to more solubility of gaseous solute into the liquid solvent.
As solubility of a gas is directly proportional to the pressure of the gas above surface of the solution. So, an increase in solute's partial pressure over solvent will also lead to an increase in solubility of gaseous solute into liquid solvent.
When surface area of solute is increased then there will be more solute particles available for reaction. Hence, more collisions will take place. As a result, rate of reaction is more due to which there will be an increase in solubility.
Thus, we can conclude that the increase in solubility or the rate of dissolving process of a gaseous solute in a liquid solvent is due to following:
- Increasing agitation
- Increasing temperature
- Increasing solute's partial pressure over the solvent
- Increasing solute's surface area
The largest advantage of sodium-ion batteries is the high natural abundance of sodium. This could make commercial production of sodium-ion batteries less expensive than lithium-ion batteries. As of 2020, sodium ion batteries have very little share of the battery market.
In order from the most likely to bind an oxygen to least likely;
3 bound o2, po2=100mmhg1 bound o2, po2=100mmhg3 bound o2, po2=40mmhg<span>1 bound o2, po2=40mmhg
</span>
Haemoglobin is more likely to bind oxygen if its other oxygen binding sites have already bound to an oxygen molecule. The higher the partial pressure of oxygen in the blood also makes it more likely that the hemoglobin will bind oxygen.
<span />