Answer:
1.4 mols
4th answer
Explanation:
22. 5 g of O2 in moles = (22.5/32) mols = 0.703 mol
The stoichiometry between O2 and H2O =1: 2
Therefore H2O produced = 2 * 0.703 mols=1.406 mols
Answer:
Mass = 14.3 g
Explanation:
Given data:
Mass of Mg(OH)₂ = 16.0 g
Mass of HCl = 11.0 g
Mass of MgCl₂ = ?
Solution:
Chemical equation:
Mg(OH)₂ + 2HCl → MgCl₂ + 2H₂O
Number of moles of Mg(OH)₂ :
Number of moles = mass/ molar mass
Number of moles = 16.0 g/ 58.3 g/mol
Number of moles = 0.274 mol
Number of moles of HCl :
Number of moles = mass/ molar mass
Number of moles = 11.0 g/ 36.5 g/mol
Number of moles = 0.301 mol
Now we will compare the moles of Mg(OH)₂ and HCl with MgCl₂.
Mg(OH)₂ : MgCl₂
1 : 1
0.274 : 0.274
HCl : MgCl₂
2 : 1
0.301 : 1/2×0.301 = 0.150
The number of moles of MgCl₂ produced by HCl are less so it will limiting reactant.
Mass of MgCl₂:
Mass = number of moles × molar mass
Mass = 0.150 × 95 g/mol
Mass = 14.3 g
Answer:
D) CN⁻
Explanation:
Hund's Rule of Maximum Multiplicity state that electrons go into degenerate orbitals of sub-levels (p,d, and f ) singly before pairing commences. Hund's rule is useful in determining the number of unpaired electrons in an atom. As such, it explains some magnetic properties of elements.
An element whose atoms or molecules contain unpaired electrons is paramagnetic. i.e., weakly attracted to substances in a magnetic field.
On the other hand, the element whose atoms or molecules are filled up with paired electrons is known as diamagnetic, i.e., not attracted by magnetic substances.
According to the molecular orbital theory, the diamagnetic molecule is CN⁻ because of the absence of unpaired electrons.
The answer is CONDENSATION.
Answer:
%
Explanation:
The ethanol combustion reaction is:
→
If we had the amount (x moles) of ethanol, we would calculate the oxygen moles required:

Dividing the previous equation by x:

We would need 3.30 oxygen moles per ethanol mole.
Then we apply the composition relation between O2 and N2 in the feed air:

Then calculate the oxygen moles number leaving the reactor, considering that 0.85 ethanol moles react and the stoichiometry of the reaction:

Calculate the number of moles of CO2 and water considering the same:


The total number of moles at the reactor output would be:

So, the oxygen mole fraction would be:
%