![\bf ~~~~~~~~~~~~\textit{angle between two vectors } \\\\ cos(\theta)=\cfrac{\stackrel{\textit{dot product}}{u \cdot v}}{\stackrel{\textit{magnitude product}}{||u||~||v||}} \implies \measuredangle \theta = cos^{-1}\left(\cfrac{u \cdot v}{||u||~||v||}\right) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} u=i+\sqrt{7}j\implies &\\\\ v=-i+9j\implies & \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bangle%20between%20two%20vectors%20%7D%20%5C%5C%5C%5C%20cos%28%5Ctheta%29%3D%5Ccfrac%7B%5Cstackrel%7B%5Ctextit%7Bdot%20product%7D%7D%7Bu%20%5Ccdot%20v%7D%7D%7B%5Cstackrel%7B%5Ctextit%7Bmagnitude%20product%7D%7D%7B%7C%7Cu%7C%7C~%7C%7Cv%7C%7C%7D%7D%20%5Cimplies%20%5Cmeasuredangle%20%5Ctheta%20%3D%20cos%5E%7B-1%7D%5Cleft%28%5Ccfrac%7Bu%20%5Ccdot%20v%7D%7B%7C%7Cu%7C%7C~%7C%7Cv%7C%7C%7D%5Cright%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20u%3Di%2B%5Csqrt%7B7%7Dj%5Cimplies%20%26%3C1%2C%5Csqrt%7B7%7D%3E%5C%5C%5C%5C%20v%3D-i%2B9j%5Cimplies%20%26%3C-1%2C9%3E%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf u\cdot v\implies (1)(-1)~+~(\sqrt{7})(9)\implies -1+9\sqrt{7}\implies 9\sqrt{7}-1~\hfill dot~product \\\\[-0.35em] ~\dotfill\\\\ ||u||\implies \sqrt{1^2+(\sqrt{7})^2}\implies \sqrt{1+7}\implies \sqrt{8}~\hfill magnitudes \\\\\\ ||v||\implies \sqrt{(-1)^2+9^2}\implies \sqrt{1+81}\implies \sqrt{82} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20u%5Ccdot%20v%5Cimplies%20%281%29%28-1%29~%2B~%28%5Csqrt%7B7%7D%29%289%29%5Cimplies%20-1%2B9%5Csqrt%7B7%7D%5Cimplies%209%5Csqrt%7B7%7D-1~%5Chfill%20dot~product%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%7C%7Cu%7C%7C%5Cimplies%20%5Csqrt%7B1%5E2%2B%28%5Csqrt%7B7%7D%29%5E2%7D%5Cimplies%20%5Csqrt%7B1%2B7%7D%5Cimplies%20%5Csqrt%7B8%7D~%5Chfill%20magnitudes%20%5C%5C%5C%5C%5C%5C%20%7C%7Cv%7C%7C%5Cimplies%20%5Csqrt%7B%28-1%29%5E2%2B9%5E2%7D%5Cimplies%20%5Csqrt%7B1%2B81%7D%5Cimplies%20%5Csqrt%7B82%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

make sure your calculator is in Degree mode.
Answer:
Once. at (3,0)
Step-by-step explanation:
It is handy to have a graphing calculator for this kind of question.
Otherwise work it out.
All the terms are multiples of 3, so simplify.
then factor (x -3)(x-3)
Set each equal to 0 and solve for x.
x - 3 = 0 x = 3
OH ! they are identical! So there is only One value for x that will produce an output of 0.
So it intersects (touches) only once.
T=4 should be the answer if ur trying 2 solve for T
Answer:
Real
Step-by-step explanation:
i^6-122-7i^2
(i^2)^3-122-7i^2
(-1)^3-122-7×(-1)
-1-122+7
-123+7
-116
So the final answer is -116
Answer:
40% of the class is Girls, so 12 students are girls
Step-by-step explanation:
add up the ratio
2+3=5
divide by 5
30/5=6
multipy ratio to find totial number of students
2*6=12
2*3=18
divide the number of students to get the pecentage
12/30=0.4=40%
18/30=0.6=60%