<span>Any
perpendicular bisector of one of the sides</span>
Answer:
354 cm^2 is the correct answer
Check the picture below.
now, we're making an assumption that, the two blue shaded region are equal in shape, and thus if that's so, that area above the 14 is 6 and below it is also 6, 14 + 6 + 6 = 26.
so hmm if we simply get the area of the trapezoid and subtract the area of the yellow triangle and the area of the cyan triangle, what's leftover is what we didn't subtract, namely the shaded region.
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h~~=height\\ a,b=\stackrel{parallel~sides}{bases~\hfill }\\[-0.5em] \hrulefill\\ h=15\\ a=14\\ b=26 \end{cases}\implies A=\cfrac{15(14+26)}{2}\implies A=300 \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{\Large Areas}}{\stackrel{trapezoid}{300}~~ - ~~\stackrel{yellow~triangle}{\cfrac{1}{2}(26)(9)}~~ - ~~\stackrel{cyan~triangle}{\cfrac{1}{2}(15)(6)}} \\\\\\ 300~~ - ~~117~~ - ~~45\implies 138\qquad \textit{blue shaded area}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h~~%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7Bparallel~sides%7D%7Bbases~%5Chfill%20%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20h%3D15%5C%5C%20a%3D14%5C%5C%20b%3D26%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B15%2814%2B26%29%7D%7B2%7D%5Cimplies%20A%3D300%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cstackrel%7Btrapezoid%7D%7B300%7D~~%20-%20~~%5Cstackrel%7Byellow~triangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%2826%29%289%29%7D~~%20-%20~~%5Cstackrel%7Bcyan~triangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%2815%29%286%29%7D%7D%20%5C%5C%5C%5C%5C%5C%20300~~%20-%20~~117~~%20-%20~~45%5Cimplies%20138%5Cqquad%20%5Ctextit%7Bblue%20shaded%20area%7D)
If the triangles are given to be congruent, the corresponding angles and corresponding sides should have the same measure and lengths. From the given, side RT is congruent to side NQ. Therefore, the answer to the question is letter B. NQ.
Answer:
c = -6
Step-by-step explanation:
To find the value of c to make the line pass through the point K = (2, -3), we just need to use the values of x = 2 and y = -3 in the equation, then we find the value of c.
So, we have that:
y - 1.5*x = c
(-3) - 1.5 * (2) = c
-3 - 3 = c
c = -6
So the value of c is -6
To check if the value is correct, we can use the value x = 2 and see if the value of y is -3:
y - 1.5*x = -6
y - 1.5*2 = -6
y - 3 = -6
y = -6 + 3 = -3
So it's correct.