The question is incomplete, here is the complete question:
The rate constant of a certain reaction is known to obey the Arrhenius equation, and to have an activation energy Ea = 71.0 kJ/mol . If the rate constant of this reaction is 6.7 M^(-1)*s^(-1) at 244.0 degrees Celsius, what will the rate constant be at 324.0 degrees Celsius?
<u>Answer:</u> The rate constant at 324°C is
<u>Explanation:</u>
To calculate rate constant at two different temperatures of the reaction, we use Arrhenius equation, which is:
where,
= equilibrium constant at 244°C =
= equilibrium constant at 324°C = ?
= Activation energy = 71.0 kJ/mol = 71000 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature =
= final temperature =
Putting values in above equation, we get:
Hence, the rate constant at 324°C is
Explanation:
Earthquakes. are caused by the earth's crust, more specifically, tectonic plates that float on top of molten magma. These plates bump into each other. it's the answer Earthquakes.
The answer will be (4) HI because the greater the difference of the bonds in electronegativity, the more polar a bond is.