Answer:
Compared to other stars we observe, the Sun appears bigger and brighter because it is much closer to earth.
Objects closer to earth appear to be much bigger and brighter.
Let me know if this helps!
Answer:
Two electrons fit in the first shell out from the nucleus and eight fit in the second. Every element with more protons than the two of Helium needs to work on shells outside the first one. one you get to ten, you have filled the first two shells.
In a water molecule, oxygen forms one covalent bond with EACH of TWO hydrogen atoms. As a result, the oxygen atom has a stable arrangement of 8 valence electrons. Each hydrogen atom forms only one bond because it needs only two electrons to be stable.
Answer:
392g sulfuric acid are produced
Explanation:
Based on the balanced equation:
2HCl + Na2SO4 → 2NaCl + H2SO4
<em>2 moles of HCl produce 1 mole of sulfuric acid</em>
<em />
To solve the problem we need to find the moles of sulfuric acid produced based on the chemical equation. Then, using its molar mass -<em>Molar mass H2SO4 = 98g/mol- </em>we can find the mass of sulfuric acid produced:
<em>Moles sulfuric acid:</em>
8mol HCl * (1mol H2SO4 / 2mol HCl) = 4 mol H2SO4
<em>Mass sulfuric acid:</em>
4mol H2SO4 * (98g / mol) =
392g sulfuric acid are produced
Answer:
Option A = 14.19 atm
Explanation:
Given data:
Volume of gas = 2.50 L
Number of moles of gas = 1.35 mol
Temperature of gas = 320 K
Pressure of gas = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will put the values in formula.
P × 2.50 L = 1.35 mol × 0.0821 atm.L/ mol.K× 320
P = 35.467 atm.L/ 2.50 L
P = 14.19 atm
Thus, option A is correct.
The kinetic energy of an object depends on two factors: mass(m) and velocity(v). The mass of an object can be measured in kilograms(kg) and velocity of the object in meters per second(m/s).