It is hard to answer this because not much information is given.
Answer:
The location of element tin is
Group 14, Period 5
Explanation:
Answer: The answer is an ionic bond
Answer:
The density of the ideal gas is directly proportional to its molar mass.
Explanation:
Density is a scalar quantity that is denoted by the symbol ρ (rho). It is defined as the ratio of the mass (m) of the given sample and the total volume (V) of the sample.
......equation (1)
According to the ideal gas law for ideal gas:
......equation (2)
Here, V is the volume of gas, P is the pressure of gas, T is the absolute temperature, R is Gas constant and n is the number of moles of gas
As we know,
The number of moles: 
where m is the given mass of gas and M is the molar mass of the gas
So equation (2) can be written as:

⇒ 
⇒
......equation (3)
Now from equation (1) and (3), we get
⇒ Density of an ideal gas:
⇒ <em>Density of an ideal gas: ρ ∝ molar mass of gas: M</em>
<u>Therefore, the density of the ideal gas is directly proportional to its molar mass. </u>
Answer:
The answer to your question is P2 = 9075000 atm
Explanation:
Data
Pressure 1 = P1 = 5 atm
Volume 1 = V1 = 363 ml
Pressure 2 = P2 = ?
Volume 2 = 0.0002 ml
Process
To solve this problem use Boyle's law
P1V1 = P2V2
-Solve for P2
P2 = P1V1/V2
-Substitution
P2 = (5 x 363) / 0.0002
-Simplification
P2 = 1815 / 0.0002
-Result
P2 = 9075000 atm