In order to deprotonate an acid, we must remove protons in order to achieve a more stable conjugate base. For this example, we can use the relationship between carboxylic acid and hydroxide.
Deprotonation is the removal of a proton from a specific type of acid in reaction to its coming into contact with a strong base. The compound formed from this reaction is known as the conjugate base of that acid. The opposite process is also possible and is when a proton is added to a special kind of base. This is a process referred to as protonation, which forms the conjugate acid of that base.
For the example we have chosen to give, the conjugate base is the carboxylate salt. This would be the compound formed by the deprotonated carboxylic acid. The base in question was strong enough to deprotonate the acid due to the greater stability offered as a conjugated base.
To learn more visit:
brainly.com/question/5613072?referrer=searchResults
Answer:
Protein Concentration is 2.82mg/L
Explanation:
According to Beer-Lambert's Law, Absorbance is directly proportional to the concentration.
However, the concentration of a solution can be determined from a calibration curve, in which Absorbance is plotted on the y-axis and the Concentration on the x-axis.
Plotting the best line, the equation of line is used
y = mx + c
where y is absorbance = 0.150
m is slope = 0.0163
x is concentration
c is intercept = 0.104
inserting the values from the question
y = mx + c
0.150 = 0.0163x + 0.104
0.0163x = 0.150 - 0.104
0.0163x = 0.046
Divide both sides by 0.0163
0.0163x/0.0163 = 0.046/0.0163
x = 2.82
Concentration of protein = 2.82 mg/L
Answer: the c thingy is where you be like burgundy sauce then be like racial slair is what it mean's so the name thingy
Explanation:
Answer: The molar mass of the gas is 9.878 g/mol.
Explanation:
According to Graham's law, the rate of diffusion is inversely proportional to square root of molar mass of gas.

where,
M = molar mass of gas
As given gas diffuses 1/7 times faster than hydrogen gas. So, its molar mass is calculated as follows.

where,
= molar mass of hydrogen gas
= molar mass of another given gas
= rate of diffusion of hydrogen
= rate of diffusion of another given gas = 
Substitute the values into above formula as follows.

Thus, we can conclude that the molar mass of the gas is 9.878 g/mol.
The density increases.
Explanation:
As you go deeper in depth, pressure increases. Density = mass/volume. The layers beneath us due to pressure get packed to the point of being very dense.