1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slavikrds [6]
2 years ago
13

Mary's job is to package kleenex boxes to ship out to sell at stores. the company

Mathematics
1 answer:
swat322 years ago
4 0

Volume is a three-dimensional scalar quantity. The number of kleenex boxes that can fit in the large box is 4096.

<h3>What is volume?</h3>

A volume is a scalar number that expresses the amount of three-dimensional space enclosed by a closed surface.

Given the larger box have a length of the side as 4 feet. Also, the kleenex box is a cube with side lengths of 3 inches. Therefore, the number of cubes that will fit is,

Number of boxes = Volume of Larger box / Volume of kleenex box

Number of box = (4 feet)³ / (3 inches)³

Number of box = (48 inches)³ / (3 inches)³

Number of box = 4096

Hence, the number of kleenex boxes that can fit in the large box is 4096.

Learn more about Volume:

brainly.com/question/13338592

#SPJ1

You might be interested in
Brenda’s bank offers car financing for 3, 4 or 5 years. If brenda chooses 5-year financing, how many monthly payments will she h
klemol [59]
The number of monthly payments Brenda will have will be given by:
Number of payments=[Number of years]×[number of months]
Number of years=5
Number of months=12
hence
# Payments=5*12=60 monthly payments
7 0
3 years ago
PLS help <br> 85% of 2500m
pishuonlain [190]

Answer:

2125m or 2km or 125m

Step-by-step explanation:

If you like my answer than please mark me brainliest thanks

3 0
2 years ago
Evaluate the expression 0.03^3
Vinvika [58]

The given expression is,

0.03^3

So, expanding we have,

0.03^3=0.03\times0.03\times0.03=\text{0}.000027

8 0
1 year ago
A shipment of 50,000 transistors arrives at a manufacturing plant. The quality control engineer at the plant obtains a random sa
Aleks04 [339]

Step-by-step explanation:

remember, the number of possible combinations to pick m out of n elements is C(n, m) = n!/(m! × (n-m)!)

50,000 transistors.

4% are defective, that means 4/100 = 1/25 of the whole.

so, the probability for one picked transistor to be defective is 1/25.

and the probability for it to work properly is then 1-1/25 = 24/25.

now, 500 picks are done.

to accept the shipment, 9 or less of these 500 picks must be defective.

the probability is then the sum of the probabilities to get

0 defective = (24/25)⁵⁰⁰

1 defective = (24/25)⁴⁹⁹×1/25 × C(500, 1)

= 24⁴⁹⁹/25⁵⁰⁰ × 500

2 defective = (24/25)⁴⁹⁸×1/25² × C(500, 2)

= 24⁴⁹⁸/25⁵⁰⁰ × 250×499

3 defective = 24⁴⁹⁷/25⁵⁰⁰ × C(500, 3) =

= 24⁴⁹⁷/25⁵⁰⁰ × 250×499×166

...

9 defective = 24⁴⁹¹/25⁵⁰⁰ × C(500, 9) =

= 24⁴⁹¹/25⁵⁰⁰ × 500×499×498×497×496×495×494×493×492×491 /

9×8×7×6×5×4×3×2 =

= 24⁴⁹¹/25⁵⁰⁰ × 50×499×166×71×31×55×494×493×41×491

best to use Excel or another form of spreadsheet to calculate all this and add it all up :

the probability that the engineer will accept the shipment is

0.004376634...

which makes sense, when you think about it, because 10 defect units in the 500 is only 2%. and since the whole shipment contains 4% defect units, it is highly unlikely that the random sample of 500 will pick so overwhelmingly the good pieces.

is the acceptance policy good ?

that completely depends on the circumstances.

what was the requirement about max. faulty rate in the first place ? if it was 2%, then the engineer's approach is basically sound.

it then further depends what are the costs resulting from a faulty unit ? that depends again on when the defect is usually found (still in manufacturing, or already out there at the customer site, or somewhere in between) and how critical the product containing such transistors is. e.g. recalls for products are extremely costly, while simply sorting the bad transistors out during the manufacturing process can be rather cheap. if there is a reliable and quick process to do so.

so, depending on repair, outage and even penalty costs it might be even advisable to have a harder limit during the sample test.

in other words - it depends on experience and the found distribution/probability curve, standard deviation, costs involved and other factors to define the best criteria for the sample test.

3 0
2 years ago
WHY must the same operation be performed on both sides of an equation? ​
lys-0071 [83]

Answer:When you are given a problem, the two sides are equal, so they are equally weighted. As long as you do the same thing on both sides, they remain the same weight. The only way that one side can become "more weight" on a side is if you make a math mistake, and thus the answer would not satisfy the original equation

Step-by-step explanation:looked it up... have a good day!

8 0
3 years ago
Other questions:
  • in February Frank spent 49 hours watching Netflix in March he only spent 36.26 hours watching what was the percent decrease in t
    11·1 answer
  • Hung had to be at school by 7:10 p.M Takes 20 minutes for Hung to shower and get dressed and 15 minutes to eat breakfast. If Hun
    7·1 answer
  • I need to know how to factor -8x^2 - x +9. I get confused when I factor out the -1. Please if you can show me it would be great!
    7·1 answer
  • Find the constant of proportionality for the table and write in the form y = kx.
    10·2 answers
  • EEF or PEE SAUNA? (UNUS ANNUS-ERS ONLY)
    10·2 answers
  • Evaluate the following limit Lim x approaching 2<br><br> (x^2)-1/x-2<br>​
    11·1 answer
  • Need help ASAP ITS DUE Soon???!!!
    6·1 answer
  • Y = (x + 6)(x – 7)<br> Distribution
    6·1 answer
  • What is the lub of 0.2,0.23,0.234,0.2343,0.23434,0.234343​
    10·1 answer
  • Question 14 *blue bubble*
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!