Answer:

Explanation:
The molecular mass of a monomer unit is:
C₂H₃Cl = 2×12.01 + 3×1.008 + 35.45 = 24.02 + 3.024 + 35.45 = 62.494 u
For 1565 units,

<u>Answer:</u> The molar mass of the insulin is 6087.2 g/mol
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = 15.5 mmHg
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (insulin) = 33 mg = 0.033 g (Conversion factor: 1 g = 1000 mg)
Volume of solution = 6.5 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:

Hence, the molar mass of the insulin is 6087.2 g/mol
The answer will be physical change
First let us calculate for the molar mass of ibuprofen:
Molar mass = 13 * 12 g/mol + 18 * 1 g/mol + 2 * 16 g/mol
Molar mass = 206 g/mol = 206 mg / mmol
Calculating for the number of moles:
moles = 200 mg / (206 mg / mmol)
moles = 0.971 mmol = 9.71 x 10^-4 moles
Using the Avogadros number, we calculate the number of
molecules of ibuprofen:
Molecules = 9.71 x 10^-4 moles * (6.022 x 10^23 molecules
/ moles)
<span>Molecules = 5.85 x 10^20 molecules</span>
Answer:
Energy transfers from the metal to the water and calorimeter until they are all at room temperature.
Explanation:
Calorimetry is the process that is used to determine the amount of heat that has been transferred in any process. In any chemical or physical process, the amount of energy is required. This energy is measured by the process of calorimetry. A calorimeter is a device that is used in this process. The heat that has been used in the process is measured and the change in the temperature is noted.