Answer:
25.97oC
Explanation:
Heat lost by aluminum = heat gained by water
M(Al) x C(Al) x [ Temp(Al) – Temp(Al+H2O) ] = M(H2O) x C(H2O) x [ Temp(Al+H2O) – Temp(H2O) ]
Where M(Al) = 23.5g, C(Al) = specific heat capacity of aluminum = 0.900J/goC, Temp(Al) = 65.9oC, Temp(Al+H2O)= temperature of water and aluminum at equilibrium = ?, M(H2O) = 55.0g, C(H2O)= specific heat capacity of liquid water = 4.186J/goC
Let Temp(Al+H2O) = X
23.5 x 0.900 x (65.9-X) = 55.0 x 4.186 x (X-22.3)
21.15(65.9-X) = 230.23(X-22.3)
1393.785 - 21.15X = 230.23X – 5134.129
230.23X + 21.15X = 1393.785 + 5134.129
251.38X = 6527.909
X = 6527.909/251.38
X = 25.97oC
So, the final temperature of the water and aluminum is = 25.97oC
Mechanical energy is the sum of potential energy and kinetic energy present in the components of a mechanical system. It is the energy associated with the motion and position of an object. All energy can be expressed in Joules (including thermal <span>energy</span>
Answer:
(12×4)+(1×2)=50
Explanation:
mass of Carbon is 12....mass of hydrogen is 1
In the reaction 2co ( g) + o2( g) → 2co2( g), the ratio of moles of oxygen used to moles of co2produced is 1:2.
We can use a variety of formulas to determine our answers here.
Our formula for pOH is -log(mol), and we can plug it in as -log(0.010). Take note that OH- is a base, not an acid.
So, the pOH of OH- is 2.
To find pH we can set up this simple equation:
pH + pOH = 14
All we need to do is subtract 2 from 14, therefore the pH is 12.
This makes sense since acids range in the pH of 1-6, and we are dealing with a base. Hope I could help!