While falling, both the sheet of paper and the paper ball experience air resistance. But the surface area of the sheet is much more than that of the spherical ball. And air resistance varies directly with surface area. Hence the sheet experiences more air resistance than the ball and it falls more slowly than the paper ball.
Hope that helps!
Each side has to have at least 44 horses
F61160 N. This is further explained below.
<h3>What is the force?</h3>
Generally, We are only interested in the component that operates horizontally since the vertical components all cancel each other out. The pressure difference works on the hemisphere to generate a normal force all over the surface, but we are only concerned with that force's horizontal component. This may be determined by supposing the hemispheres to be two flat circular plates of the same radius as the hemispheres that have been forced together.
Therefore, force is equal to pressure multiplied by area, which is
F= (970 -15 )( * (0.45 m)2)
F=60754 N for each side.
Therefore, each side has to have at least 44 horses
44* 1390 = 61160 N
Read more about force
brainly.com/question/13191643
#SPJ1
0.4823 m/s
The initial velocity u1 of the ball=0
From the law of conservation of linear momentum.
m1u1+m2u2=m1v1+m2v2
(160×0)+(170×u1)=(160×0.3)+(170×0.2)
u1=0.4823m/s
Answer:
114.32195122 but Round your answer to three significant figures.) is 114
Explanation:
Just took the test
Answer:
false, true, true, true, false
Explanation: