Answer:
F = 2.6692 x 10⁻⁹ N
Explanation:
Given,
The mass of the rock, m = 10 kg
The mass of the boulder, M = 100 kg
The distance between them, d = 5 m
The gravitational force between the two bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them. It is given by the formula
<em> F = GMm/d² newton</em>
Where,
G - Universal gravitational constant
Substituting the given values,
F = 6.673 x 10⁻¹¹ x 100 x 10 / 5²
F = 2.6692 X 10⁻⁹ N
Hence, the force between the two bodies is, F = 2.6692 X 10⁻⁹ N
Answer:
H = 3.9 m
Explanation:
mass (m) = 48 kg
initial velocity (initial speed) (U) = 8.9 m/s
final velocity (V) = 1.6 m/s
acceleration due to gravity (g) = 9.8 m/s^{2}
find the height she raised her self to as she crosses the bar (H)
from energy conservation, the change in kinetic energy = change in potential energy
0.5m(V^{2} - [test]U^{2}[/tex]) = mg(H-h)
where h = initial height = 0 since she was on the ground
the equation becomes
0.5m(V^{2} - [test]U^{2}[/tex]) = mgH
0.5 x 48 x (1.6^{2} - [test]8.9^{2}[/tex]) = 48 x 9.8 x H
-1839.6 = 470.4 H (the negative sign indicates a decrease in kinetic energy so we would not be making use of it further)
H = 3.9 m
Answer:
Explanation:
If E₀ is the electric field outside the smaller sphere and r is the radius of larger sphere.
E₀ = kQ/r²
The radius of the larger sphere is 3r and the charge on both sphere is same then the electric field outside the larger sphere is given as
E = kQ/(3r)² = kQ/9r² = 1/9 (kQ/r²)= 1/9 x E₀
hence the correct option is e.
Answer:
No, because pressure is determined by force and the area over which that force acts.
Explanation:
The gravitational force between the two balls is 
Explanation:
The magnitude of the gravitational force between two objects is given by:
where
:
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
For the balls in this problem, we have


r = 0.74 m
Substituting into the equation, we find the gravitational force between the two balls:
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly