Answer:
i can help you i know this answer
Answer:
The moment of inertia is 
Explanation:
From the question we are told that
The frequency is 
The mass of the pendulum is 
The location of the pivot from the center is 
Generally the period of the simple harmonic motion is mathematically represented as

Where I is the moment of inertia about the pivot point , so making I the subject of the formula it
=> ![I = [ \frac{T}{2 \pi } ]^2 * m* g * d](https://tex.z-dn.net/?f=I%20%3D%20%20%5B%20%5Cfrac%7BT%7D%7B2%20%5Cpi%20%7D%20%5D%5E2%20%2A%20%20m%2A%20%20g%20%2A%20d)
But the period of this simple harmonic motion can also be represented mathematically as

substituting values


So
![I = [ \frac{2.174}{2 * 3.142 } ]^2 * 2.40* 9.8 * 0.380](https://tex.z-dn.net/?f=I%20%3D%20%20%5B%20%5Cfrac%7B2.174%7D%7B2%20%2A%203.142%20%7D%20%5D%5E2%20%2A%20%20%202.40%2A%20%209.8%20%2A%200.380)

TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.
To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:
e = -N•dI/dt; dI = ABcos(theta)
where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.
Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
Hope this helps!
Answer:
v ’= v + v₀
a system can be another vehicle moving in the opposite direction.
Explanation:
In an inertial reference frame the speed of the vehicle is given by the Galileo transformational
v ’= v - v₀
where v 'is the speed with respect to the mobile system, which moves with constant speed, v is the speed with respect to the fixed system and vo is the speed of the mobile system.
The vehicle's speedometer measures the harvest of a fixed system on earth, in this system v decreases, for a system where v 'increases it has to be a system in which the mobile system moves in the negative direction of the x axis, whereby the transformation ratio is
v ’= v + v₀
Such a system can be another vehicle moving in the opposite direction.
Our year would now be 2.8 times longer, we would also be receiving only 1/4 of the energy from the sun that we currently do. This means that we’d now be out beyond the orbit of Mars and right at the edge of the asteroid belt, and things would rapidly get very cold with temperatures expected to drop by around 50 degrees Celsius on average, and that’s with our current atmospheric composition which would not be stable in the new conditions. And also, any living thing on earth would die.