Answer:
Explanation:
Given that,
Weight of jet
W = 2.25 × 10^6 N
It is at rest on the run way.
Two rear wheels are 16m behind the front wheel
Center of gravity of plane 10.6m behind the front wheel
A. Normal force entered on the ground by front wheel.
Taking moment about the the about the real wheel.
Check attachment for better understanding
So,
Clock wise moment = anti-clockwise moment
W × 5.4 = N × 16
2.25 × 10^6 × 5.4 = 16•N
N = 2.25 × 10^6 × 5.4 / 16
N = 7.594 × 10^5 N
B. Normal force on each of the rear two wheels.
Using the second principle of equilibrium body.
Let the rear wheel normal be Nr and note, the are two real wheels, then, there will be two normal forces
ΣFy = 0
Nr + Nr + N — W = 0
2•Nr = W—N
2•Nr = 2.25 × 10^6 — 7.594 × 10^5
2•Nr = 1.491 × 10^6
Nr = 1.491 × 10^6 / 2
Nr = 7.453 × 10^5 N
Answer:
0.466 (3 sig. fig.)
Explanation:
Frictional force acting on the box = 5.00×10^2xsin25
Normal force acting on the box = 5.00×10^2xcos25
coefficient of friction = 0.466 (3 sig. fig.)
One with greater mass (8kg)
The solution would be like
this for this specific problem:
V^2 = 2AS = 2FS/M
V = sqrt(2FS/M) =
sqrt(2*105*.75/.087) = 44.52817783 = 42.5 mps
So the speed of the arrow as it leaves the bow
is 42.5 mps.
I am hoping that this answer has
satisfied your query and it will be able to help you in your endeavor, and if
you would like, feel free to ask another question.
Answer:
It would be PE=16kg * 9.8 m/s^2 * 1m = 160 J
Explanation:
The person who asked this question ended up answering his own question so I'm here to let you know all that the answer was founded by the person whos posted the question himself full credit goes to him :)