The first thing you should know for this case is that density is defined as the quotient between mass and volume.
d = m / v
We have two states:
State 1:
d1 = 1.20 g / l
v1 = 1.02 × 106 l
State 2:
v2 = 1.09 × 106 l
Since the mass remains constant, then:
m = d1 * v1
Then, the density in state two will be:
d2 = m / v2
Substituting the value of the mass we have:
d2 = (d1 * v1) / v2
Substituting the values:
d2 = ((1.20) * (1.02 * 10 ^ 6)) / (1.09 * 10 ^ 6) = 1.12 g / l
answer:
The density of the heated air in the balloon is 1.12 g / l
Answer:
The gravity on this planet is stronger than that of earth.
Explanation:
First we need to find the acceleration due to gravity value of this planet to compare its gravity force with that of the earth. Hence, we will use second equation of motion:
h = Vi t + (0.5)gt²
where,
h = height or depth of crater = 100 m
Vi = Initial Velocity of rock = 0 m/s
t = time = 4 s
g = acceleration due to gravity on this planet = ?
Therefore,
100 m = (0 m/s)(4 s) + (0.5)(g)(4 s)²
g = (200 m)/(16 s²)
g = 12.5 m/s²
on earth:
ge = 9.8 m/s²
Since,
ge < g
Therefore,
<u>The gravity on this planet is stronger than that of earth.</u>
the answer is waxing gibbous moon
Explanation:
.