Answer:

Step-by-step explanation:
AC = AB + BC



Add 7 to both sides:


Subtract 7x from both sides:

Divide both sides by 11:


Answer:
a horizontal translation by 3 units left
Step-by-step explanation:
f(x)= |x|
we are given with absolute function f(x)
g(x) = |x+3|
To get g(x) from f(x) , 3 is added with x
If any number is added with x then the graph of the function move to the left
Here 3 is added with x, so the graph of f(x) moves 3 units left to get g(x)
So there will be a horizontal translation by 3 units
Consider the right triangle HBF. The Pythagorean theorem tells you ...
HF² = HB² + BF²
The lengths HB and BF can be determined by counting grid squares, or by subtracting coordinates. Here, it is fairly convenient to count grid squares. When we do that, we find ...
HB = 2
BF = 5
Using these values in the equation above, we get
HF² = 2² + 5²
HF² = 4 + 25 = 29
Taking the square root gives the length HF.
HF = √29
So we need to find the sum of the first 5 terms.
You have told me that the first term is 10 meters, and that r = 0.5 per term.
With this knowledge, we can use the formula s_n=a₁((1-r^n)/(1-r)).
Plugging in the terms that we know...
s₅=10((1-0.5⁵)/(1-0.5))
s₅=10(0.96875/0.5)
s₅=10(1.9375)
s₅=19.375
With s₅, we can determine that the ball has traveled a total of 19.375 meters after 5 bounces.
5x3-4x2-20x+16=0 Three solutions were found : x = 4/5 = 0.800 x = 2 x = -2Reformatting the input :Changes made to your input should not affect the solution:
(1): "x2" was replaced by "x^2". 1 more similar replacement(s).
Step by step solution :Step 1 :Equation at the end of step 1 : (((5 • (x3)) - 22x2) - 20x) + 16 = 0 Step 2 :Equation at the end of step 2 : ((5x3 - 22x2) - 20x) + 16 = 0 Step 3 :Checking for a perfect cube : 3.1 5x3-4x2-20x+16 is not a perfect cube
Trying to factor by pulling out : 3.2 Factoring: 5x3-4x2-20x+16
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: 5x3+16 Group 2: -4x2-20x
Pull out from each group separately :
Group 1: (5x3+16) • (1)Group 2: (x+5) • (-4x)
I hope it helps