1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fittoniya [83]
2 years ago
12

Which number can each term of the equation be multiplied by to eliminate the fractions before solving?

Mathematics
1 answer:
Lerok [7]2 years ago
7 0

To eliminate the fraction, we multiply by 4

<h3>How to eliminate the fractions?</h3>

The equation is given as:

-3/4m-1/2=2+1/4m

Rewrite properly as:

-\frac{3}{4}m - \frac 12 = 2 + \frac 14m

The denominators of the above fractions are 2 and 4

The LCM of 2 and 4 is 4

So, we multiply through by 4.

This gives

-3m - 2 = 8 + m

Hence, to eliminate the fraction, we multiply by 4

Read  more about fractions at:

brainly.com/question/10354322

#SPJ1

You might be interested in
Decimals between 10 and 15 with an interval of 0.75
IgorC [24]
10.75
11.50
11.80
12.55
13.30
14.05
14.80
15.55
3 0
3 years ago
0.2(10-5c)=5c-16 halp
iogann1982 [59]

Answer:

c= 3

Step-by-step explanation:

0.2(10 -5c)= 5c -16

<em>Expand</em><em>:</em>

0.2(10) +0.2(-5c)= 5c -16

2 -c= 5c -16

<em>Bring</em><em> </em><em>all</em><em> </em><em>c</em><em> </em><em>terms</em><em> </em><em>to</em><em> </em><em>1</em><em> </em><em>side</em><em>,</em><em> </em><em>constant</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>other</em><em>:</em>

5c +c= 2 +16

<em>Simplify</em><em>:</em>

6c= 18

<em>Divide</em><em> </em><em>by</em><em> </em><em>6</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>:</em>

c= 18 ÷6

c= 3

5 0
3 years ago
Read 2 more answers
Write three different integer addition expressions that equal –5.
podryga [215]

Answer:

1. 5 + (-10)

2. -8 + 3

3. -7 + 2

5 0
3 years ago
Evaluate the limit of sequence:
mr_godi [17]

Rationalize both the numerator and denominator. Given

\dfrac{\sqrt a-\sqrt b}{\sqrt c-\sqrt d}

we can rationalize it by introducing conjugates of the numerator and denominator:

\dfrac{\sqrt a-\sqrt b}{\sqrt c-\sqrt d} \cdot \dfrac{\sqrt a+\sqrt b}{\sqrt a+\sqrt b} \cdot \dfrac{\sqrt c+\sqrt d}{\sqrt c+\sqrt d} \\\\ = \dfrac{\left(\sqrt a\right)^2 - \left(\sqrt b\right)^2}{\left(\sqrt c\right)^2-\left(\sqrt d\right)^2} \cdot \dfrac{\sqrt c+\sqrt d}{\sqrt a + \sqrt b} \\\\ = \dfrac{a-b}{c-d} \cdot \dfrac{\sqrt c+\sqrt d}{\sqrt a + \sqrt b}

Then the limit is equivalent to

\displaystyle \lim_{n\to\infty} \frac{(n+3)-n}{(n+1)-n} \cdot \dfrac{\sqrt{n+1}+\sqrt n}{\sqrt{n+3}+\sqrt n} = 3 \lim_{n\to\infty} \dfrac{\sqrt{n+1}+\sqrt n}{\sqrt{n+3}+\sqrt n}

For the remaining expression, divide through uniformly by \sqrt n:

\dfrac{\sqrt{n+1}+\sqrt n}{\sqrt{n+3}+\sqrt n} = \dfrac{\sqrt{1+\frac1n} + 1}{\sqrt{1+\frac3n}+1}

As <em>n</em> goes to infinity, the remaining terms containing <em>n</em> converge to 0, leaving

\dfrac{\sqrt{1}+1}{\sqrt1+1} = \dfrac22 = 1

making the overall limit 3.

8 0
2 years ago
I will give brainliest <br><br><br> 2 (x + 3 )= -x⁣
blsea [12.9K]

Answer:

-2 =x

Step-by-step explanation:

2 (x + 3 )= -x⁣

Distribute the 2

2x+6 = -x

Subtract 2x from each side

2x+6-2x = -x-2x

6 = -3x

Divide each side by -3

6/-3 = -3x/-3

-2 =x

4 0
3 years ago
Read 2 more answers
Other questions:
  • X + 5y = 8<br> -x + 2y = -1<br> How to solve this?
    5·1 answer
  • Solve for a.<br><br> 5a - 2 = 23<br> a = ?
    12·2 answers
  • What is another way to write 7/8x+3/4=-6
    15·1 answer
  • A researcher is interested in finding a 90% confidence interval for the mean number of times per
    9·1 answer
  • The picture shows a box sliding down a ramp.
    15·2 answers
  • A microscope shows you an image of an object that is 20 times the objects actual size. Therefore, the scale factor of the enlarg
    12·2 answers
  • I want to know the answers
    6·1 answer
  • POSSIBLE POINTS: 5
    14·1 answer
  • What is the median?<br> A(18<br> B(27<br> C(33.2<br> D(34.5
    10·2 answers
  • What represents the recursive formula for the arithmetic sequence an=7-3(n-1)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!