Answers:
Ava’s graph is a vertical translation of f(x) = x^2.
Ava’s graph moved 4 units from f(x) = x^2 in a positive direction.
Ava’s graph has a y-intercept of 4.
Given:
Ava graphs the function
.
Victor graphs the function 
To find y intercept we plug in 0 for x

= 4
So ,Ava’s graph has a y-intercept of 4.
Ava graphs the function 
If any number is added at the end then the graph will be shifted up. 4 is added at the end so there will be vertical translation.
Hence , Ava’s graph is a vertical translation of f(x) = x^2. Also Ava moved 4 units up from f(x) = x^2 in a positive y- direction.
Victor graphs the function 
If any number added with x then the graph will be shifted left. the graph will be shifted in negative x direction.
Answer:
The answer is c
Step-by-step explanation:
Well, since the Circle is 8cm you can divide the circle by two to get 4
Answer:
0_10 =0_2
Step-by-step explanation:
Convert the following to base 2:
0_10
Hint: | Starting with zero, raise 2 to increasingly larger integer powers until the result exceeds 0.
Determine the powers of 2 that will be used as the places of the digits in the base-2 representation of 0:
Power | \!\(\*SuperscriptBox[\(Base\), \(Power\)]\) | Place value
0 | 2^0 | 1
Hint: | The powers of 2 (in ascending order) are associated with the places from right to left.
Label each place of the base-2 representation of 0 with the appropriate power of 2:
Place | | | 2^0 |
| | | ↓ |
0_10 | = | ( | __ | )_(_2)
Hint: | Divide 0 by 2 and find the remainder. The remainder is the first digit.
Determine the value of 0 in base 2:
0/2=0 with remainder 0
Place | | | 2^0 |
| | | ↓ |
0_10 | = | ( | 0 | )_(_2)
Hint: | Express 0_10 in base 2.
The number 0_10 is equivalent to 0_2 in base 2.
Answer: 0_10 =0_2
Answer:
56
Step-by-step explanation: