Taking the derivative of 7 times secant of x^3:
We take out 7 as a constant focus on secant (x^3)
To take the derivative, we use the chain rule, taking the derivative of the inside, bringing it out, and then the derivative of the original function. For example:
The derivative of x^3 is 3x^2, and the derivative of secant is tan(x) and sec(x).
Knowing this: secant (x^3) becomes tan(x^3) * sec(x^3) * 3x^2. We transform tan(x^3) into sin(x^3)/cos(x^3) since tan(x) = sin(x)/cos(x). Then secant(x^3) becomes 1/cos(x^3) since the secant is the reciprocal of the cosine.
We then multiply everything together to simplify:
sin(x^3) * 3x^2/ cos(x^3) * cos(x^3) becomes
3x^2 * sin(x^3)/(cos(x^3))^2
and multiplying the constant 7 from the beginning:
7 * 3x^2 = 21x^2, so...
our derivative is 21x^2 * sin(x^3)/(cos(x^3))^2
5+7+11=23
3+11+53=67
3+11+61=71
are some examples
You can do this by finding a number close to it, and then finding out how to do it.
For example with 63(square root sign), find out what is close to it.
7x7=49 while 8x8=64
Because of this, we now know that it is between 7 and 8 but is also really close to 8.
Our number could be 7.9
Hope this helped!!!
Answer:
4/5 chance
Step-by-step explanation:
There are 4 numbers that fit the rule, 1, 3, 4, 5, since all of them are either odd or greater than 3. There will be a 4/5 chance of picking one.