<em>A straight piece of wire with a current I flowing through it is placed in a magnetic field</em>
<em>A straight piece of wire with a current I flowing through it is placed in a magnetic fielduniform and perpendicular to the magnetic field lines. Magnetic force acting on the string</em>
<em>A straight piece of wire with a current I flowing through it is placed in a magnetic fielduniform and perpendicular to the magnetic field lines. Magnetic force acting on the stringthere is a way</em>
Answer:
I'm not sure if you maybe forgot to add in some information but I can give you the equation you will need to solve this..! (just without the bit of infomration you might need)

In this case you'll be solving for t and I can help you with your first step, you'll divide 2 by 4, getting you to:

Answer:
a= (-g) from the moment the ball is thrown, until it stops in the air.
a = (0) when the ball stops in the air.
a = (g) since the ball starts to fall.
Explanation:
The acceleration is <em>(-g)</em> <em>from the moment the ball is thrown, until it stops in the air</em> because the movement goes in the opposite direction to the force of gravity. In the instant <em>when the ball stops in the air the acceleration is </em><em>(0)</em> because it temporarily stops moving. Then, <em>since the ball starts to fall, the acceleration is </em><em>(g)</em><em> </em>because the movement goes in the same direction of the force of gravity
Answer:
270 m
Explanation:
We can find the distance travelled by the car by using the following suvat equation:

where
s is the distance travelled
u is the initial velocity
v is the final velocity
t is the time
For the car in this problem,
u = 0
v = 45 m/s
t = 12 s
Substituting into the equation, we find:

Answer:
um it well it will be 19.6 d) 9.8 J
Explanation: