1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
postnew [5]
3 years ago
12

For this discussion, you will work in groups to answer the questions. In a video game, airplanes move from left to right along t

he path described by LaTeX: y=2+\frac{1}{x} y = 2 + 1 x . They can shoot rockets tangent to the direction of flight at targets on the x-axis. Where will a rocket fired from LaTeX: \left(1,3\right) ( 1 , 3 ) hit the target? Where will a rocket fired from LaTeX: \left(2,2.5\right) ( 2 , 2.5 ) hit the target? Where will a rocket fired from LaTeX: \left(2.5,2.4\right) ( 2.5 , 2.4 ) hit the target? Where will a rocket fired from LaTeX: \left(4,\:2.25\right) ( 4 , 2.25 ) hit the target?
Physics
1 answer:
Mariulka [41]3 years ago
8 0

Answer:

When fired from (1,3) the rocket will hit the target at (4,0)

When fired from (2, 2.5) the rocket will hit the target at (12,0)

When fired from (2.5, 2.4) the rocket will hit the target at (\frac{35}{2},0)

When fired from (4,2.25) the rocket will hit the target at (40,0)

Explanation:

All of the parts of the problem are solved in the same way, so let's start with the first point (1,3).

Let's assume that the rocket's trajectory will be a straight line, so what we need to do here is to find the equation of the line tangent to the trajectory of the airplane and then find the x-intercept of such a line.

In order to find the line tangent to the graph of the trajectory of the airplane, we need to start by finding the derivative of such a function:

y=2+\frac{1}{x}

y=2+x^{-1}

y'=-x^{-2}

y'=-\frac{1}{x^{2}}

so, we can substitute the x-value of the given point into the derivative, in this case x=1, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(1)^{2}}

m=y'=-1

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-3=-1(x-1})

y-3=-1x+1

y=-x+1+3

y=-x+4

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-x+4=0

and solve for x

x=4

so, when fired from (1,3) the rocket will hit the target at (4,0)

Now, let's calculate the coordinates where the rocket will hit the target if fired from (2, 2.5)

so, we can substitute the x-value of the given point into the derivative, in this case x=2, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(2)^{2}}

m=y'=-\frac{1}{4}

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-2.5=-\frac{1}{4}(x-2})

y-2.5=-\frac{1}{4}x+\frac{1}{2}

y=-\frac{1}{4}x+\frac{1}{2}+\frac{5}{2}

y=-\frac{1}{4}x+3

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-\frac{1}{4}x+3=0

and solve for x

x=12

so, when fired from (2, 2.5) the rocket will hit the target at (12,0)

Now, let's calculate the coordinates where the rocket will hit the target if fired from (2.5, 2.4)

so, we can substitute the x-value of the given point into the derivative, in this case x=2.5, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(2.5)^{2}}

m=y'=-\frac{4}{25}

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-2.4=-\frac{4}{25}(x-2.5})

y-2.4=-\frac{4}{25}x+\frac{2}{5}

y=-\frac{4}{25}x+\frac{2}{5}+2.4

y=-\frac{4}{25}x+\frac{14}{5}

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-\frac{4}{25}x+\frac{14}{5}=0

and solve for x

x=\frac{35}{20}

so, when fired from (2.5, 2.4) the rocket will hit the target at (\frac{35}{2},0)

Now, let's calculate the coordinates where the rocket will hit the target if fired from (4, 2.25)

so, we can substitute the x-value of the given point into the derivative, in this case x=4, so:

y'=-\frac{1}{x^{2}}

y'=-\frac{1}{(4)^{2}}

m=y'=-\frac{1}{16}

so we can now use this slope and the point-slope form of the line to find the equation of the line tangent to the trajectory of the airplane so we get:

y-y_{1}=m(x-x_{1})

y-2.25=-\frac{1}{16}(x-4})

y-2.25=-\frac{1}{16}x+\frac{1}{4}

y=-\frac{1}{16}x+\frac{1}{4}+2.25

y=-\frac{1}{16}x+\frac{5}{2}

So we can now set y=0 so find the x-coordinate where the rocket hits the x-axis.

-\frac{1}{16}x+\frac{5}{2}=0

and solve for x

x=40

so, when fired from (4,2.25) the rocket will hit the target at (40,0)

I uploaded a graph that represents each case.

You might be interested in
Consider two thin, coaxial, coplanar, uniformly charged rings with radii a and b푏 (a
Wittaler [7]

Answer:

electric potential, V = -q(a²- b²)/8π∈₀r³

Explanation:

Question (in proper order)

Consider two thin coaxial, coplanar, uniformly charged rings with radii a and b (b < a) and charges q and -q, respectively. Determine the potential at large distances from the rings

<em>consider the attached diagram below</em>

the electric potential at point p, distance r from the center of the outer charged ring with radius a is as given below

Va = q/4π∈₀ [1/(a² + b²)¹/²]

Va = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} }

Also

the electric potential at point p, distance r from the center of the inner charged ring with radius b is

Vb = \frac{-q}{4\pi e0} * \frac{1}{(b^{2} + r^{2} )^{1/2} }

Sum of the potential at point p is

V = Va + Vb

that is

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } + \frac{-q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * [\frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{1}{(b^{2} + r^{2} )^{1/2} }]

the expression below can be written as the equivalent

\frac{1}{(a^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + a^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} }

likewise,

\frac{1}{(b^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + b^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }

hence,

V = \frac{q}{4\pi e0} * [\frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

1/r is common to both equation

hence, we have it out and joined to the 4π∈₀ denominator that is outside

V = \frac{q}{4\pi e0 r} * [\frac{1}{{(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

by reciprocal rule

1/a² = a⁻²

V = \frac{q}{4\pi e0 r} * [{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} - {(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2}]

by binomial expansion of fractional powers

where (1+a)^{n} =1+na+\frac{n(n-1)a^{2} }{2!}+ \frac{n(n-1)(n-2)a^{3}}{3!}+...

if we expand the expression we have the equivalent as shown

{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} = (1-\frac{a^{2} }{2r^{2} } )

also,

{(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2} = (1-\frac{b^{2} }{2r^{2} } )

the above equation becomes

V = \frac{q}{4\pi e0 r} * [((1-\frac{a^{2} }{2r^{2} } ) - (1-\frac{b^{2} }{2r^{2} } )]

V = \frac{q}{4\pi e0 r} * [1-\frac{a^{2} }{2r^{2} } - 1+\frac{b^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * [-\frac{a^{2} }{2r^{2} } +\frac{b^{2} }{2r^{2} }]\\\\V = \frac{q}{4\pi e0 r} * [\frac{b^{2} }{2r^{2} } -\frac{a^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * \frac{1}{2r^{2} } *(b^{2} -a^{2} )

V = \frac{q}{8\pi e0 r^{3} } * (b^{2} -a^{2} )

Answer

V = \frac{q (b^{2} -a^{2} )}{8\pi e0 r^{3} }

OR

V = \frac{-q (a^{2} -b^{2} )}{8\pi e0 r^{3} }

8 0
3 years ago
List the three main things necessary to build an electromagnet.
Arturiano [62]

Answer:

Electromagnets are special types of magnets that are made by passing current through coils of wire. To make an electromagnet, the minimum requirements are:

1. A nail (usually made of iron, steel or zinc)

2. Dry cell batteries

3. Wire (Usually copper wire)

Other things could be:

1. Electric tape to hold both ends of the wire properly at the battery terminals.

2. Scissors to cut the wire into desired length.

3. Iron fillings for testing purposes.

7 0
3 years ago
You are driving at 40 miles per hour and you speed up to 60 miles per hour over the course of 20 miles. How long were
notka56 [123]

Answer:

120 hours

Explanation:

4 0
3 years ago
Jerome does not pay his balances off his credit cards each month. He often has to pay interest and finance charges. What is Jero
slega [8]

Jerome is referred to a debtor as he doesn't pay his balances off his credit cards each month.

<h3>Who is a Debtor?</h3>

This is defined as an individual who owes money while on the other hand a deadbeat is a person who pays his balances off his credit cards each month without having to pay interests.

Since jerome failed to pay the balances on the credit card then he is called a debtor.

Read more about Debtor here brainly.com/question/25919625

4 0
2 years ago
Question 5(Multiple Choice Worth 3 points) (05.01 LC) Complete the following statement. The universe is filled with millions of
pashok25 [27]

the answer is a: galaxies. galaxy clusters are groups of galaxies that like to hang out together out there in space. the milky way's own galaxy cluster is called the local group.

8 0
3 years ago
Read 2 more answers
Other questions:
  • Energy is the ability to
    6·2 answers
  • Jacques and Georgette meet in the middle of a lake while paddling in their canoes. They come to a complete stop and talk for a w
    11·1 answer
  • What are the four planets that orbit closets to the sun
    6·1 answer
  •  I will mark you as brainliest if you answer correctly
    9·1 answer
  • suppose that a block is pulled 16 meters across a floor. what amount of work is done if the force used to drag the block is 22n
    7·1 answer
  • What is true of all places on earth during the equinoxes
    12·2 answers
  • A train is moving west with an initial velocity of 20m/s accelerates at 4m/s for 10 seconds during this time the train moves a d
    9·1 answer
  • True or False?<br><br> There are equal numbers of protons and electrons in neutral atoms.
    11·2 answers
  • Certain rifles can fire a bullet with a speed of 950 m/s just as it leaves the muzzle (this speed is called the muzzle velocity)
    13·1 answer
  • Who ever helps can you help me with some other ones?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!