Answer:
Δ h = 52.78 m
Explanation:
given,
Atmospheric pressure at the top of building = 97.6 kPa
Atmospheric pressure at the bottom of building = 98.2 kPa
Density of air = 1.16 kg/m³
acceleration due to gravity, g = 9.8 m/s²
height of the building = ?
We know,
Δ P = ρ g Δ h
(98.2-97.6) x 10³ = 1.16 x 9.8 x Δ h
11.368 Δ h = 600
Δ h = 52.78 m
Hence, the height of the building is equal to 52.78 m.
Answer:
Explanation:
The energy of a photon is given by the equation
, where h is the <em>Planck constant</em> and f the frequency of the photon. Thus, N photons of frequency f will give an energy of
.
We also know that frequency and wavelength are related by
, so we have
, where c is the <em>speed of light</em>.
We will want the number of photons, so we can write

We need to know then how much energy do we have to calculate N. The equation of power is
, so for the power we have and considering 1 second we can calculate the total energy, and then only consider the 4% of it which will produce light, or better said, the N photons, which means it will be
.
Putting this paragraph in equations:
.
And then we can substitute everything in our equation for number of photons, in S.I. and getting the values of constants from tables:

Answer:
<em>1</em><em>. </em><em>A body is said to be at rest if its position does not change with respect to its surroundings.</em>
Answer:
What is the power of focus from the eye when a subject looks from 20 to 500 from its eye?
Explanation:
Is that your question?
Answer:
182.28 W
Explanation:
Here ,
m = 7.30 Kg
distance , d= 28.0 m
time , t = 11.0 s
average power supplied = change in potential energy/time
average power supplied = m×g×d/time
average power supplied = 7.30×9.81×28/11
average power supplied = 182.28 W
the average power supplied is 182.28 W