Given that the potential difference is V = 1.5 V.
The length of the wire is l = 1.5 m.
The cross-sectional area is

The resistivity of the wire is

We have to find the power dissipated in the wire.
First, we need to calculate resistance.
The resistance can be calculated as

The formula to calculate power is

Substituting the values, the power will be

Thus, the power dissipated in the wire is 17.1 W
Answer:
0 111.0N be cause the rest do not add up
The speed of Matt is 10 mph.
Doug runs 2 miles an hour faster than Matt, so let Matt’s speed equal x miles per hour. Then Doug’s speed equals x + 2 miles per hour. Each lap is one-quarter of a mile, so Doug runs 1.5 miles in the time it takes Matt to run 1.25 miles.
Rate of Matt is x
Rate of Dough is (x + 2)
Time taken by Matt is 1.25/x
Time taken by Dough is 1.25/(x + 2)
Distance covered by Matt is 1.25
Distance covered by Dough is 1.5
Dough and Matt took the same amount of time from the time Doug started, so make an equation by setting the two times in the chart equal to each other, and then solve for x:
= 
1.5x = 1.25(x + 2)
1.5x = 1.25x + 2.5
0.25x = 2.5
x = 10
So Matt ran at 10 miles per hour.
To know more about time, speed and distance, visit: brainly.com/question/26046491
#SPJ4
Based on the trend produced by the dose - response graph, it would be best to evacuate the residents in other to prevent the increasing percentage of deaths due to the rising level of pollutant A.
- The curve shows that the pollutant level in mg/kg of pollutant A is still increasing, hence, groundwater monitoring alone won't be the best decision to make.
- Since the pollutant level is still increasing, then the spill level still need effective monitoring.
- Evacuation of residents seems to be the best decision that should be taken based on the information interpreted on the graph.
Therefore, Evacuating residents to prevent rising death percentage is required as the pollutant level is yet to subside.
Learn more :brainly.com/question/24844489