Hi! Your answer is 11358.24 dollars. I hope that helps!
Hello from MrBillDoesMath!
Answer:
x = 1/2 (1 +\- i sqrt(23))
Discussion:
x \3x - 2 = (x/3)*x - 2 = (x^2)/3 - 2 (*)
1 \3x - 4 = (1/3)x - 4 (**)
(*) = (**) =>
(x^2)/3 -2 = (1/3)x - 4 => multiply both sides by 3
x^2 - 6 = x - 12 => subtract x from both sides
x^2 -x -6 = -12 => add 12 to both sides
x^2-x +6 = 0
Using the quadratic formula gives:
x = 1/2 (1 +\- i sqrt(23))
Thank you,
MrB
Part A
Answers:
Mean = 5.7
Standard Deviation = 0.046
-----------------------
The mean is given to us, which was 5.7, so there's no need to do any work there.
To get the standard deviation of the sample distribution, we divide the given standard deviation s = 0.26 by the square root of the sample size n = 32
So, we get s/sqrt(n) = 0.26/sqrt(32) = 0.0459619 which rounds to 0.046
================================================
Part B
The 95% confidence interval is roughly (3.73, 7.67)
The margin of error expression is z*s/sqrt(n)
The interpretation is that if we generated 100 confidence intervals, then roughly 95% of them will have the mean between 3.73 and 7.67
-----------------------
At 95% confidence, the critical value is z = 1.96 approximately
ME = margin of error
ME = z*s/sqrt(n)
ME = 1.96*5.7/sqrt(32)
ME = 1.974949
The margin of error is roughly 1.974949
The lower and upper boundaries (L and U respectively) are:
L = xbar-ME
L = 5.7-1.974949
L = 3.725051
L = 3.73
and
U = xbar+ME
U = 5.7+1.974949
U = 7.674949
U = 7.67
================================================
Part C
Confidence interval is (5.99, 6.21)
Margin of Error expression is z*s/sqrt(n)
If we generate 100 intervals, then roughly 95 of them will have the mean between 5.99 and 6.21. We are 95% confident that the mean is between those values.
-----------------------
At 95% confidence, the critical value is z = 1.96 approximately
ME = margin of error
ME = z*s/sqrt(n)
ME = 1.96*0.34/sqrt(34)
ME = 0.114286657
The margin of error is roughly 0.114286657
L = lower limit
L = xbar-ME
L = 6.1-0.114286657
L = 5.985713343
L = 5.99
U = upper limit
U = xbar+ME
U = 6.1+0.114286657
U = 6.214286657
U = 6.21
N=m-2
m-2n=8, using n from above in this equation yields:
m-2(m-2)=8 perform indicated multiplication
m-2m+4=8 combine like terms on left side
-m+4=8 subtract 4 from both sides
-m=4 divide both sides by -1
m=-4
So the correct answer is A) m=-4
Answer:
Exact Form:
2
√
10
Decimal Form:
6.32455532
Step-by-step explanation:
Use the distance formula to determine the distance between the two points.
√
(
-5+7
)
2
+
(
7
−
1
)
2