The piece-wise function is defined as follows:
.
.
.
<h3>What is a piece-wise function?</h3>
A piece-wise function is a function that has multiple definitions, depending on the input.
In this graph, for x at least 0 and less than 3, the parabolic curve passes through (0,0), (1,1), (2,4) and has an open interval at (3,9), hence the definition is:
![f(x) = x^2, 0 \leq x < 3](https://tex.z-dn.net/?f=f%28x%29%20%3D%20x%5E2%2C%200%20%5Cleq%20x%20%3C%203)
For x greater than 3 and at most 6, it is a line going through (3,9) and (6,4), hence:
![f(x) = -\frac{5}{3}x + b](https://tex.z-dn.net/?f=f%28x%29%20%3D%20-%5Cfrac%7B5%7D%7B3%7Dx%20%2B%20b)
Goes through (3,9), hence:
![9 = -\frac{5}{3}(3) + b](https://tex.z-dn.net/?f=9%20%3D%20-%5Cfrac%7B5%7D%7B3%7D%283%29%20%2B%20b)
b = 14.
So
![f(x) = -\frac{5}{3}x + 14, 3 < x \leq 6](https://tex.z-dn.net/?f=f%28x%29%20%3D%20-%5Cfrac%7B5%7D%7B3%7Dx%20%2B%2014%2C%203%20%3C%20x%20%5Cleq%206)
For x between 6 and 10, it is a line going through (6,4) and (10,10), hence:
![m = \frac{10 - 4}{10 - 6} = \frac{6}{4} = \frac{3}{2}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B10%20-%204%7D%7B10%20-%206%7D%20%3D%20%5Cfrac%7B6%7D%7B4%7D%20%3D%20%5Cfrac%7B3%7D%7B2%7D)
Then:
![f(x) = \frac{3}{2}x + b](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cfrac%7B3%7D%7B2%7Dx%20%2B%20b)
When x = 10, f(x) = 10, hence:
![10 = \frac{3}{2}(10) + b](https://tex.z-dn.net/?f=10%20%3D%20%5Cfrac%7B3%7D%7B2%7D%2810%29%20%2B%20b)
10 = 15 + b
b = -5.
Hence:
![f(x) = \frac{3}{2}x - 5, 6 \leq x \leq 10](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cfrac%7B3%7D%7B2%7Dx%20-%205%2C%206%20%5Cleq%20x%20%5Cleq%2010)
More can be learned about piece-wise functions at brainly.com/question/24734454
#SPJ1